Skip to main content
Log in

A visualized fire detection method based on convolutional neural network beyond anchor

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

Convolutional neural networks (CNNs) have achieved the most advanced performance in visual object detection and semantic segmentation tasks, so that the application of CNNs in fire detection will greatly improve the accuracy of detection. However, the existing fire detection methods are difficult to achieve real-time detection due to the complicated model, slow detection rate, low detection accuracy, and the huge amount of calculation, also, high memory usage limits the implementation of some methods on the device. Therefore, a fast and efficient fire detection model, whose design is derived from the lightweight network MobileNetV3 and the anchor free structure, is proposed in this paper. The proposed method has achieved an accuracy of 90.2% on a self-built dataset, while the model size is only 21.4M, and the running speed can reach 29.5f/s. At the same time, comparative experiments were conducted on two public fire datasets, and according to the results, the proposed method showed better performance and faster speed, confirming that the proposed method can satisfy real-time fire detection and is achievable for application on embeddable equipment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Chi R, Lu Z-M, Ji Q-G (2017) Real-time multi-feature based fire flame detection in video. IET Image Process 11(1):31–37

    Article  Google Scholar 

  2. Gaur A, Singh A, Kumar A, Kulkarni KS, Lala S, Kapoor K, Srivastava V, Kumar A, Mukhopadhyay SC (2019) Fire sensing technologies: a review. IEEE Sensors J 19(9):3191–3202

    Article  Google Scholar 

  3. Celik T (2010) Fast and efficient method for fire detection using image processing. ETRI J 32 (6):881–890

    Article  Google Scholar 

  4. Enis Çetin A, Dimitropoulos K, Gouverneur B, Grammalidis N, Günay O, Hakan Y, Ugur HB, Verstockt TS (2013) Video fire detection–Review. Digital Signal Processing 23(6):1827–1843

    Article  Google Scholar 

  5. Xiong Z, Caballero RE, Wang H, Finn AM, Peng Pei-yuan (2009) Video fire detection–Techniques and applications in the fire industry. Multimedia Content Analysis, 1–13

  6. Madani K, Kachurka V, Sabourin C, Amarger V, Golovko V, Rossi L (2018) A human-like visual-attention-based artificial vision system for wildland firefighting assistance. Appl Intell 48(8):2157–2179

    Article  Google Scholar 

  7. Vicente J, Guillemant P (2002) An image processing technique for automatically detecting forest fire. Int J Therm Sci 41(12):1113–1120

    Article  Google Scholar 

  8. Gao Y, Xie L, Zhang Z, Fan Q (2020) Twin support vector machine based on improved artificial fish swarm algorithm with application to flame recognition. Appl Intell 50(8):2312–2327

    Article  Google Scholar 

  9. LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436–444

    Article  Google Scholar 

  10. Newell A, Huang Z, Deng J (2017) Associative embedding: End-to-end learning for joint detection and grouping. In: Advances in Neural Information Processing Systems, pp 2277–2287

  11. Rafiee A, Dianat R, Jamshidi M, Tavakoli R, Abbaspour S (2011) Fire and smoke detection using wavelet analysis and disorder characteristics. In: 2011 3rd International Conference on Computer Research and Development(ICCRD), vol 3. IEEE, pp 262–265

  12. Ko ByoungChul, Cheong K, Nam J-Y (2010) Early fire detection algorithm based on irregular patterns of flames and hierarchical bayesian networks. Fire Safety Journal 45(4):262–270

    Article  Google Scholar 

  13. Foggia P, Saggese A, Vento M (2015) Real-time fire detection for video-surveillance applications using a combination of experts based on color, shape, and motion. IEEE Trans Circuits Syst Video Technol 25 (9):1545–1556

    Article  Google Scholar 

  14. Toulouse T, Rossi L, Campana A, Celik T, Akhloufi MA (2017) Computer vision for wildfire research: an evolving image dataset for processing and analysis. Fire Safety Journal 92:188–194

    Article  Google Scholar 

  15. Qureshi WS, Ekpanyapong M, Dailey MN, Rinsurongkawong S, Malenichev A, Krasotkina O (2016) Quickblaze: early fire detection using a combined video processing approach. Fire Technol 52 (5):1293–1317

    Article  Google Scholar 

  16. Borges PVK, Izquierdo E (2010) A probabilistic approach for vision-based fire detection in videos. IEEE Trans Circuits Syst Video Technol 20(5):721–731

    Article  Google Scholar 

  17. Kong SG, Jin D, Li S, Kim H (2016) Fast fire flame detection in surveillance video using logistic regression and temporal smoothing. Fire Safety Journal 79:37–43

    Article  Google Scholar 

  18. Habiboǧlu YH, Günay O, Çetin AE (2012) Covariance matrix-based fire and flame detection method in video. Machine Vision and Applications 23(6):1103–1113

    Article  Google Scholar 

  19. Truong TX, Kim J-M (2012) Fire flame detection in video sequences using multi-stage pattern recognition techniques. Eng Appl Artif Intell 25(7):1365–1372

    Article  Google Scholar 

  20. Hashemzadeh M, Zademehdi A (2019) Fire detection for video surveillance applications using ICA K-medoids-based color model and efficient spatio-temporal visual features. Expert Syst Appl 130:60–78

    Article  Google Scholar 

  21. Arel I, Rose DC, Karnowski TP (2010) Deep machine learning-a new frontier in artificial intelligence research. IEEE Comput Intell Mag 5(4):13–18

    Article  Google Scholar 

  22. Maksymiv O, Rak T, Menshikova O (2016) Deep convolutional network for detecting probable emergency situations. In: 2016 IEEE First International Conference on Data Stream Mining & Processing (DSMP). IEEE, pp 199–202

  23. Gaur A, Singh A, Kumar A, Kumar A, Kapoor K (2020) Video flame and smoke based fire detection algorithms: A literature review. Fire Technology 56(5):1943–1980

    Article  Google Scholar 

  24. Frizzi S, Kaabi R, Bouchouicha M, Ginoux J-M, Moreau E, Fnaiech F (2016) Convolutional neural network for video fire and smoke detection. In: IECON 2016-42nd annual conference of the IEEE industrial electronics society. IEEE, pp 877–882

  25. Muhammad K, Ahmad J, Wook Baik S (2018) Early fire detection using convolutional neural networks during surveillance for effective disaster management. Neurocomputing 288:30–42

    Article  Google Scholar 

  26. Muhammad K, Ahmad J, Mehmood I, Rho S, Baik SW (2018) Convolutional neural networks based fire detection in surveillance videos. IEEE Access 6:18174–18183

    Article  Google Scholar 

  27. Muhammad K, Ahmad J, Lv Z, Bellavista P, Po Y, Baik SW (2018) Efficient deep CNN-based fire detection and localization in video surveillance applications. IEEE Transactions on Systems Man, and Cybernetics: Systems 49(7):1419–1434

    Article  Google Scholar 

  28. Kim B, Lee J (2019) A video-based fire detection using deep learning models. Appl Sci 9 (14):2862

    Article  Google Scholar 

  29. Chaoxia C, Shang W, Zhang F (2020) Information-guided flame detection based on Faster r-CNN. IEEE Access 8:58923– 58932

    Article  Google Scholar 

  30. Wang Y, Dang L, Ren J (2019) Forest fire image recognition based on convolutional neural network. Journal of Algorithms & Computational Technology 13:1748302619887689

    Google Scholar 

  31. A Akhloufi M, Booto Tokime R, Elassady H (2018) Wildland fires detection and segmentation using deep learning. In: Pattern Recognition and Tracking XXIX, vol 10649. International Society for Optics and Photonics, p 106490B

  32. Valikhujaev Y, Abdusalomov A, Cho YI (2020) Automatic fire and smoke detection method for surveillance systems based on dilated CNNs. Atmosphere 11(11):1241

    Article  Google Scholar 

  33. Wu S, Zhang L (2018) Using popular object detection methods for real time forest fire detection. In: 2018 11th International Symposium on Computational Intelligence and Design (ISCID), vol 1. IEEE, pp 280–284

  34. Shen D, Chen X, Nguyen M, Yan Wei Qi (2018) Flame detection using deep learning. In: 2018 4th International Conference on Control, Automation and Robotics (ICCAR). IEEE, pp 416–420

  35. Jiao Z, Zhang Y, Xin J, Mu L, Yi Y, Liu H, Liu D (2019) A deep learning based forest fire detection approach using UAV and YOLOv3. In: 2019 1st International Conference on Industrial Artificial Intelligence (IAI). IEEE, pp 1–5

  36. de Vries JS, AW Kemp R (1993) Surveillance sensor for autonomous wildfire detection. In: Surveillance Technologies and Imaging Components, vol 1952. International Society for Optics and Photonics, pp 227–233

  37. De Vries JS, AW Kemp R (1994) Results with a multispectral autonomous wildfire detection system. In: Infrared Technology XX, vol 2269. International Society for Optics and Photonics, pp 18–28

  38. Kong T, Sun F, Liu H, Jiang Y, Li L, Shi J (2020) Foveabox: Beyound anchor-based object detection. IEEE Trans Image Process 29:7389–7398

    Article  Google Scholar 

  39. Howard A, Sandler M, Chu G, Chen L-C, Chen B, Tan M, Wang W, Zhu Y, Pang R, Vasudevan V, al et (2019) Searching for mobilenetv3. In: Proceedings of the IEEE International Conference on Computer Vision(ICCV), pp 1314–1324

  40. Lin T-Y, Goyal P, Girshick R, He K, Dollár P. (2017) Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision(ICCV), pp 2980–2988

  41. Glorot X, Bordes A, Bengio Y (2011) Deep sparse rectifier neural networks. In: Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics(AISTATS), pp 315–323

  42. Lin T-Y, Dollár P, Girshick R, He K, Hariharan B, Belongie S (2017) Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition(CVPR), pp 2117–2125

  43. Pang J, Chen K, Shi J, Feng H, Ouyang W, Lin D (2019) Libra R-CNN: Towards balanced learning for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition(CVPR), pp 821–830

  44. Wang X, Girshick R, Gupta A, He K (2018) Non-local neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition(CVPR), pp 7794–7803

  45. Ren S, He K, Girshick R, Sun J (2016) Faster r-CNN: Towards real-time object detection with region proposal networks. IEEE Trans Pattern Anal Mach Intell 39(6):1137–1149

    Article  Google Scholar 

  46. Jiang B, Luo R, Mao J, Xiao T, Jiang Y (2018) Acquisition of localization confidence for accurate object detection. In: Proceedings of the European Conference on Computer Vision (ECCV), pp 784–799

  47. Rezatofighi H, Tsoi N, Gwak J-Y, Sadeghian A, Reid I, Savarese S (2019) Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition(CVPR), pp 658–666

  48. Lin T-Y, Maire M, Belongie S, Hays J, Perona P, Ramanan D, Dollár P, Lawrence Zitnick C (2014) Microsoft COCO: Common objects in context. In: Proceedings of the European Conference on Computer Vision (ECCV). Springer, pp 740–755

  49. Liu W, Anguelov D, Erhan D, Szegedy C, Reed S, Fu C-Y, C Berg A (2016) SSD: Single shot multibox detector. In: Proceedings of the European Conference on Computer Vision (ECCV). Springer, pp 21–37

  50. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition(CVPR), pp 770–778

  51. Newell A, Yang K, Deng J (2016) Stacked hourglass networks for human pose estimation. In: Proceedings of the European Conference on Computer Vision (ECCV). Springer, pp 483–499

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanyan Liu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Zhang, W., Liu, Y. et al. A visualized fire detection method based on convolutional neural network beyond anchor. Appl Intell 52, 13280–13295 (2022). https://doi.org/10.1007/s10489-022-03243-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-022-03243-7

Keywords

Navigation