Skip to main content
Log in

A framework for itemset placement with diversification for retail businesses

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

Alongside revenue maximization, retailers seek to offer a diverse range of items to facilitate sustainable revenue generation in the long run. Moreover, customers typically buy sets of items, i.e., itemsets, as opposed to individual items. Therefore, strategic placement of diversified and high-revenue itemsets is a priority for the retailer. Research efforts made towards the extraction and placement of high-revenue itemsets in retail stores do not consider the notion of diversification. Further, candidate itemsets generated using existing utility mining schemes usually explode; which can cause memory and retrieval-time issues. This work makes three key contributions. First, we propose an efficient framework for retrieval of high-revenue itemsets with a varying size and a varying degree of diversification. A higher degree of diversification is indicative of fewer repetitive items in the top-revenue itemsets. Second, we propose the kUI (k U tility I temset) index for quick and efficient retrieval of diverse top-λ high-revenue itemsets. We also propose the HUDIP (H igh-U tility and D iversified I temset P lacement) scheme, which exploits our proposed kUI index for placement of high-revenue and diversified itemsets. Third, our extensive performance study with both real and synthetic datasets demonstrates the effectiveness of our proposed HUDIP scheme in efficiently determining high-revenue and diversified itemsets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. Largest malls in the world (2020) https://www.touropia.com/largest-malls-in-the-world/

  2. Agrawal R, Srikant R, et al. (1994) Fast algorithms for mining association rules. In: Proc. VLDB, vol 1215, pp 487–499

  3. Ahn KI (2012) Effective product assignment based on association rule mining in retail. Expert Syst Appl 39:12551–12556

    Article  Google Scholar 

  4. Baek Y, Yun U, Kim H, Kim J, Vo B, Truong T, Deng ZH (2021) Approximate high utility itemset mining in noisy environments. Knowl-Based Syst 212:106596

    Article  Google Scholar 

  5. Baek Y, Yun U, Kim H, Nam H, Kim H, Lin JCW, Vo B, Pedrycz W (2021) Rhups: Mining recent high utility patterns with sliding window–based arrival time control over data streams. ACM Transactions on Intelligent Systems and Technology (TIST) 12(2):1–27

    Article  Google Scholar 

  6. Chan R, Yang Q, Shen Y (2003) Mining high utility itemsets. In: Proc. ICDM. IEEE, pp 19–26

  7. Chaudhary P, Mondal A, Reddy PK (2017) A flexible and efficient indexing scheme for placement of Top-Utility itemsets for different slot sizes. In: Proc. BDA. Springer, pp 257– 277

  8. Chaudhary P, Mondal A, Reddy PK (2018) A Diversification-Aware itemset placement framework for Long-Term sustainability of retail businesses. In: Proc. DEXA. Springer, pp 103–118

  9. Chaudhary P, Mondal A, Reddy PK (2019) An efficient premiumness and utility-based itemset placement scheme for retail stores. In: Proc. DEXA. Springer, pp 287–303

  10. Chaudhary P, Mondal A, Reddy PK (2020) An improved scheme for determining top-revenue itemsets for placement in retail businesses. International Journal of Data Science and Analytics

  11. Chen M, Lin C (2007) A data mining approach to product assortment and shelf space allocation. Expert Syst Appl 32:976–986

    Article  Google Scholar 

  12. Chen Y, Chen J, Tung C (2006) A data mining approach for retail knowledge discovery with consideration of the effect of shelf-space adjacency on sales. Decis Support Syst 42:1503–1520

    Article  Google Scholar 

  13. Etgar M, Rachman-Moore D (2010) Market and product diversification: the evidence from retailing. Journal of Marketing Channels 17:119–135

    Article  Google Scholar 

  14. Fournier-Viger P, Lin JC, Wu C, Tseng VS, Faghihi U (2016) Mining minimal High-Utility itemsets. In: Proc. DEXA. Springer, pp 88–101

  15. Fournier-Viger P, Wu C, Tseng VS (2014) Novel concise representations of high utility itemsets using generator patterns. In: Proc. ADMA. Springer, pp 30–43

  16. Fournier-Viger P, Wu C, Zida S, Tseng VS (2014) FHM: Faster High-Utility Itemset Mining Using Estimated Utility Co-occurrence Pruning. In: Proc. ISMIS. Springer, pp 83–92

  17. Fournier-Viger P, Zhang Y, Lin JCW, Fujita H, Koh YS (2019) Mining local and peak high utility itemsets. Inf Sci 481:344–367

    Article  MathSciNet  Google Scholar 

  18. Fournier-Viger P, Zida S, Lin JC, Wu C, Tseng VS (2016) EFIM-Closed: Fast and Memory Efficient Discovery of Closed High-Utility Itemsets. In: Proc. MICAI. Springer, pp 199–213

  19. Gan W, Lin JCW, Fournier-Viger P, Chao HC, Hong TP, Fujita H (2018) A survey of incremental high-utility itemset mining. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 8 (2):e1242

    Google Scholar 

  20. Han J, Pei J, Yin Y (2000) Mining frequent patterns without candidate generation. In: Proc. ACM SIGMOD, vol. 29. ACM, pp 1–12

  21. Hansen P, Heinsbroek H (1979) Product selection and space allocation in supermarkets. Eur J Oper Res 3:474–484

    Article  Google Scholar 

  22. Hart C (1999) The retail accordion and assortment strategies: an exploratory study. The International Review of Retail. Distribution and Consumer Research 9:111–126

    Article  Google Scholar 

  23. Jaysawal BP, Huang JW (2019) DMHUPS: Discovering Multiple high utility patterns simultaneously. Knowl Inf Syst 59(2):337–359

    Article  Google Scholar 

  24. Kim H, Yun U, Baek Y, Kim J, Vo B, Yoon E, Fujita H (2021) Efficient list based mining of high average utility patterns with maximum average pruning strategies. Inf Sci 543:85–105

    Article  Google Scholar 

  25. Kim J, Yun U, Yoon E, Lin JCW, Fournier-Viger P (2020) One scan based high average-utility pattern mining in static and dynamic databases. Futur Gener Comput Syst 111:143–158

    Article  Google Scholar 

  26. Lee J, Yun U, Lee G, Yoon E (2018) Efficient incremental high utility pattern mining based on pre-large concept. Eng Appl Artif Intell 72:111–123

    Article  Google Scholar 

  27. Liu M, Qu J (2012) Mining high utility itemsets without candidate generation. In: Proc. CIKM. ACM, pp 55–64

  28. Liu Y, Liao W, Choudhary A (2005) A fast high utility itemsets mining algorithm. In: Proc. Workshop on utility-based data mining. ACM, pp 90–99

  29. Mittal R, Mondal A, Chaudhary P, Reddy PK (2021) An urgency-aware and revenue-based itemset placement framework for retail stores. In: Accepted proc. DEXA. Springer

  30. Nam H, Yun U, Yoon E, Lin JCW (2020) Efficient approach of recent high utility stream pattern mining with indexed list structure and pruning strategy considering arrival times of transactions. Inf Sci 529:1–27

    Article  MathSciNet  Google Scholar 

  31. Nguyen LT, Vu VV, Lam MT, Duong TT, Manh LT, Nguyen TT, Vo B, Fujita H (2019) An efficient method for mining high utility closed itemsets. Inf Sci 495:78–99

    Article  Google Scholar 

  32. Pasquier N, Bastide Y, Taouil R, Lakhal L (1999) Discovering frequent closed itemsets for association rules. In: Proc. ICDT. Springer, pp 398–416

  33. Ryang H, Yun U (2017) Indexed list-based high utility pattern mining with utility upper-bound reduction and pattern combination techniques. Knowl Inf Syst 51(2):627–659

    Article  Google Scholar 

  34. SPMF: A Java Open-Source Data Mining Library, http://www.philippe-fournier-viger.com/spmf/datasets

  35. Tseng VS, Wu C, Fournier-Viger P, Philip SY (2015) Efficient algorithms for mining the concise and lossless representation of high utility itemsets. IEEE Trans Knowl Data Eng 27:726– 739

    Article  Google Scholar 

  36. Tseng VS, Wu C, Shie B, Yu PS (2010) UP-Growth: An Efficient Algorithm for High Utility Itemset Mining. In: Proc. ACM SIGKDD. ACM, pp 253–262

  37. Wigley SM (2011) A conceptual model of diversification in apparel retailing: the case of Next plc. J Text Inst 102:917–934

    Article  Google Scholar 

  38. Yang M (2001) An efficient algorithm to allocate shelf space. Eur J Oper Res 131:107–118

    Article  Google Scholar 

  39. Yang M, Chen W (1999) A study on shelf space allocation and management. Int J Prod Econ 60:309–317

    Article  Google Scholar 

  40. Yun U, Nam H, Kim J, Kim H, Baek Y, Lee J, Yoon E, Truong T, Vo B, Pedrycz W (2020) Efficient transaction deleting approach of pre-large based high utility pattern mining in dynamic databases. Futur Gener Comput Syst 103:58–78

    Article  Google Scholar 

  41. Zida S, Fournier-Viger P, Lin JC, Wu C, Tseng VS (2015) EFIM: A highly efficient algorithm for High-Utility itemset mining. In: Proc. MICAI. Springer, pp 530–546

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anirban Mondal.

Ethics declarations

Conflict of Interests

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mondal, A., Mittal, R., Chaudhary, P. et al. A framework for itemset placement with diversification for retail businesses. Appl Intell 52, 14541–14559 (2022). https://doi.org/10.1007/s10489-022-03250-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-022-03250-8

Keywords

Navigation