Skip to main content
Log in

A two stages prediction strategy for evolutionary dynamic multi-objective optimization

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

In many engineering and scientific research processes, the dynamic multi-objective problems (DMOPs) are widely involved. It’s a quite challenge, which involves multiple conflicting objects changing over time or environment. The main task of DMOPs is tracking the Pareto front as soon as possible when the object changes over time. To accelerate the tracking process, a two stages prediction strategy (SPS) for DMOPs is proposed. To improve the prediction accuracy, population prediction is divided into center point prediction and manifold prediction when the change is detected. Due to the limitations of the support vector machine, the new population is predicted by the combination of the elite solution in the previous environment and Kalman filter in the early stage. Experimental results show that the proposed algorithm performs better on convergence and distribution when dealing with nonlinear problems, especially in the problems where the environmental change occurs frequently.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Azzouz R, Bechikh S, Said LB, Trabelsi W (2018) Handling time-varying constraints and objectives in dynamic evolutionary multi-objective optimization. Swarm Evol Comput 39:222–248. https://doi.org/10.1016/j.swevo.2017.10.005

    Article  Google Scholar 

  2. Cheng J, Yen GG, Zhang G (2015) A many-objective evolutionary algorithm with enhanced mating and environmental selections. IEEE Trans Evol Comput 19(4):592–605. https://doi.org/10.1109/TEVC.2015.2424921

    Article  Google Scholar 

  3. Coello Coello CA, González Brambila S, Figueroa Gamboa J, Castillo Tapia MG, Hernández Gómez R (2020) Evolutionary multiobjective optimization: open research areas and some challenges lying ahead. Complex Intell Syst 6:221–236. https://doi.org/10.1007/s40747-019-0113-4

    Article  Google Scholar 

  4. Cruz C, González JR, Pelta DA (2011) Optimization in dynamic environments: a survey on problems, methods and measures. Soft Comput 15(7):1427–1448. https://doi.org/10.1007/s00500-010-0681-0

    Article  Google Scholar 

  5. Das S, Mandal A, Mukherjee R (2014) An adaptive differential evolution algorithm for global optimization in dynamic environments. IEEE Trans Cybern 44(6):966–978. https://doi.org/10.1109/TCYB.2013.2278188

    Article  Google Scholar 

  6. Fan R, Wei L, Sun H, Hu Z (2020) An enhanced reference vectors-based multi-objective evolutionary algorithm with neighborhood-based adaptive adjustment. Neural Comput & Applic 32:11,767–11,789. https://doi.org/10.1007/s00521-019-04660-5

    Article  Google Scholar 

  7. He C, Tian Y, Wang H, Jin Y (2020) A repository of real-world datasets for data-driven evolutionary multiobjective optimization. Complex Intell Syst 6:189–197. https://doi.org/10.1007/s40747-019-00126-2

    Article  Google Scholar 

  8. He Z, Yen GG, Zhang J (2014) Fuzzy-based pareto optimality for many-objective evolutionary algorithms. IEEE Trans Evol Comput 18(2):269–285. https://doi.org/10.1109/tevc.2013.2258025

    Article  Google Scholar 

  9. Hu Z, Wei Z, Sun H, Yang J, Wei L (2021) Optimization of metal rolling control using soft computing approaches: a review. Arch Comput Method Eng 28:405–421. https://doi.org/10.1007/s11831-019-09380-6

    Article  Google Scholar 

  10. Hu Z, Yang J, Sun H, Wei L, Zhao Z (2017) An improved multi-objective evolutionary algorithm based on environmental and history information. Neurocomputing 222:170–182. https://doi.org/10.1016/j.neucom.2016.10.014

    Article  Google Scholar 

  11. Jin Y, Branke J (2005) Evolutionary optimization in uncertain environments-a survey. IEEE Trans Evol Comput 9(3):303–317. https://doi.org/10.1109/TEVC.2005.846356

    Article  Google Scholar 

  12. Koo WT, Chi KG, Tan KC (2010) A predictive gradient strategy for multiobjective evolutionary algorithms in a fast changing environment. Memetic Computing 2(2):87–110. https://doi.org/10.1007/s12293-009-0026-7

    Article  Google Scholar 

  13. Li H, Zhang Q (2009) Multiobjective optimization problems with complicated pareto sets, moea/d and nsga-ii. IEEE Trans Evol Comput 13(2):284–302. https://doi.org/10.1109/tevc.2008.925798

    Article  Google Scholar 

  14. Li Q, Zou J, Yang S, Zheng J, Gan R (2019) A predictive strategy based on special points for evolutionary dynamic multi-objective optimization. Soft Comput 23:3723–3739. https://doi.org/10.1007/s00500-018-3033-0

    Article  Google Scholar 

  15. Linnala M, Madetoja E, Ruotsalainen H, Hamalainen J (2012) Bi-level optimization for a dynamic multiobjective problem. Eng Optim 44(2):195–207. https://doi.org/10.1080/0305215X.2011.573853

    Article  Google Scholar 

  16. Ma X, Yang J, Sun H, Hu Z, Wei L (2021) Feature information prediction algorithm for dynamic multi-objective optimization problems. European Journal of Operational Research

  17. Ma X, Yang J, Sun H, Hu Z, Wei L (2021) Multiregional co-evolutionary algorithm for dynamic multiobjective optimization. Inf Sci 545(4):1–24. https://doi.org/10.1016/j.ins.2020.07.009

    Article  MathSciNet  MATH  Google Scholar 

  18. Muruganantham A, Tan KC, Vadakkepat P (2016) Evolutionary dynamic multiobjective optimization via kalman filter prediction. IEEE Trans Cybern 46(12):2862. https://doi.org/10.1109/TCYB.2015.2490738

    Article  Google Scholar 

  19. Wang H, Wang D, Yang S (2009) A memetic algorithm with adaptive hill climbing strategy for dynamic optimization problems. Soft Comput 13(8-9):763–780. https://doi.org/10.1007/s00500-008-0347-3

    Article  Google Scholar 

  20. Yang S, Yao X (2005) Experimental study on population-based incremental learning algorithms for dynamic optimization problems. Soft Comput 9(11):815–834. https://doi.org/10.1007/s00500-004-0422-3

    Article  MATH  Google Scholar 

  21. Zeng S, Chen S, Fan K (2020) Interval-valued intuitionistic fuzzy multiple attribute decision making based on nonlinear programming methodology and topsis method. Inf Sci 506:424–442. https://doi.org/10.1016/j.ins.2019.08.027

    Article  Google Scholar 

  22. Zeng S, Luo D, Zhang C, Li X (2020) A correlation-based topsis method for multiple attribute decision making with single-valued neutrosophic information. Int J Inf Technol Decis Mak 19(1):343–358. https://doi.org/10.1142/S0219622019500512

    Article  Google Scholar 

  23. Zhang Q, Li H (2007) Moea/d: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans Evol Comput 11(6):712–731. https://doi.org/10.1109/TEVC.2007.892759

    Article  Google Scholar 

  24. Zhang Q, Zhou A, Jin Y (2008) Rm-meda: a regularity model-based multiobjective estimation of distribution algorithm. IEEE Trans Evol Comput 12(1):41–63. https://doi.org/10.1109/TEVC.2007.894202

    Article  Google Scholar 

  25. Zhang Z (2008) Multiobjective optimization immune algorithm in dynamic environments and its application to greenhouse control. Appl Soft Comput 8(2):959–971. https://doi.org/10.1016/j.asoc.2007.07.005

    Article  Google Scholar 

  26. Zhou A, Jin Y, Zhang Q (2014) A population prediction strategy for evolutionary dynamic multiobjective optimization. IEEE Trans Cybern 44(1):40–53. https://doi.org/10.1109/TCYB.2013.2245892

    Article  Google Scholar 

  27. Zhou A, Qu BY, Li H, Zhao SZ, Suganthan PN, Zhang Q (2011) Multiobjective evolutionary algorithms: a survey of the state of the art. Swarm Evol Comput 1(1):32–49. https://doi.org/10.1016/j.swevo.2011.03.001

    Article  Google Scholar 

  28. Zitzler E, Thiele L, Laumanns M, Fonseca CM, da Fonseca VG (2003) Performance assessment of multiobjective optimizers: an analysis and review. IEEE Trans Evol Comput 7(2):117–132. https://doi.org/10.1109/TEVC.2003.810758

    Article  Google Scholar 

  29. Zou F, Yen G, Tang L (2019) A knee-guided prediction approach for dynamic multi-objective optimization. Inf Sci 509:193–209. https://doi.org/10.1016/j.ins.2019.09.016

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China [No. 62003296, 61703361]; the Natural Science Foundation of Hebei [No. E2018203162, F20202 03031]; the Science and Technology Research Projects of Hebei [No. QN2020225]; the Post-Doctoral Research Projects of Hebei [No. B2019003021]; the Hebei Province Graduate Innovation Funding Project [CXZZBS2022134]. The authors would like to thank the editor and anonymous reviewers for their helpful comments and suggestions to improve the quality of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ziyu Hu.

Ethics declarations

Conflict of Interests

The authors declared that they have no conflicts of interest to this work. We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In order to facilitate readers to view the paper, the glossary of abbreviations is presented in Table 8.

Table 8 Glossary of abbreviations

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, H., Ma, X., Hu, Z. et al. A two stages prediction strategy for evolutionary dynamic multi-objective optimization. Appl Intell 53, 1115–1131 (2023). https://doi.org/10.1007/s10489-022-03353-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-022-03353-2

Keywords

Navigation