Skip to main content
Log in

A novel attribute reduction method based on intuitionistic fuzzy three-way cognitive clustering

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

Attribute reduction plays a critical role in the Pawlak rough set, which aims to improve the computational efficiency and accuracy of a system by removing redundant attributes. Existing attribute reduction algorithms focus on attribute importance, information entropy and discernibility matrices while ignoring the classification differences of attributes and loss cost in the reduction process. More importantly, people are not “all-around experts”, and their cognition level of domain knowledge (CLDK) may vary, which leads to multiple reduction results based on the same attribute set. In view of this, we integrate learners’ CLDK and present an attribute reduction model based on intuitionistic fuzzy three-way cognitive clustering (IF3WCC). In this scenario, we first present the concept, calculation methods and semantic interpretation of intuitionistic fuzzy cognitive entropy (IFCE) and prove its related properties. Intuitionistic fuzzy cognition similarity (IFCS) is then proposed and utilized to implement IF3WCC. We then introduce the three-way decision (3WD) model to calculate the reduction cost of attributes in various clusters and divide them into irreducible, reducible, and determined reduction sets. Next, we develop a secondary reduction strategy for uncertain reduction attributes and provide a corresponding algorithm. Finally, the rationality and effectiveness of the proposed model are verified by comparing it with existing attribute reduction methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3.
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zadeh LA (1965) Fuzzy sets. Inf Control 8(65):338–353. https://doi.org/10.1016/S0019-9958(65)90241-X

    Article  MATH  Google Scholar 

  2. Shafer G (1976) A mathematical theory of evidence. Princeton, NJ, USA: Princeton Univ. Press, vol. 42

  3. Wille R (1982) Restructuring lattice theory: an approach based on hierarchies of concepts. In: Rival I, et al (eds) Ordered Sets. NATO Advanced Study Institutes Series. Springer, Dordrecht, pp. 445–470. https://doi.org/10.1007/978-94-009-7798-3_15

  4. Pawlak Z (1982) Rough sets. Int J Comput Inform Sci 11(5):341–356. https://doi.org/10.1007/BF01001956

    Article  MATH  Google Scholar 

  5. Torra V (2010) Hesitant fuzzy sets. Int J Intell Syst 25(6):529–539. https://doi.org/10.1002/int.20418

    Article  MATH  Google Scholar 

  6. Yao Y, Zhang X (2017) Class-specific attribute reducts in rough set theory. Inf Sci 418:601–618. https://doi.org/10.1016/j.ins.2017.08.038

    Article  MATH  Google Scholar 

  7. Fujita H, Gaeta A, Loia V, Orciuoli F (2019) Hypotheses analysis and assessment in counterterrorism activities: a method based on owa and fuzzy probabilistic rough sets. IEEE T Fuzzy Syst 28(5):831–845. https://doi.org/10.1109/TFUZZ.2019.2955047

    Article  Google Scholar 

  8. Yang L, Xu W, Zhang X, Sang B (2020) Multi-granulation method for information fusion in multi-source decision information system. Int J Approx Reason 122:47–65. https://doi.org/10.1016/j.ijar.2020.04.003

    Article  MathSciNet  MATH  Google Scholar 

  9. Yue X, Chen Y, Miao D, Fujita H (2020) Fuzzy neighborhood covering for three-way classification. Inf Sci 507:795–808. https://doi.org/10.1016/j.ins.2018.07.065

    Article  MathSciNet  MATH  Google Scholar 

  10. Qian Y, Liang X, Wang Q, Liang J, Liu B, Skowron A, Yao Y, Ma J, Dang C (2018) Local rough set: a solution to rough data analysis in big data. Int J Approx Reason 97:38–63. https://doi.org/10.1016/j.ijar.2018.01.008

    Article  MathSciNet  MATH  Google Scholar 

  11. Yang X, Liang S, Yu H, Gao S, Qian Y (2019) Pseudo-label neighborhood rough set: measures and attribute reductions. Int J Approx Reason 105:112–129. https://doi.org/10.1016/j.ijar.2018.11.010

    Article  MathSciNet  MATH  Google Scholar 

  12. Herbert JP, Yao J (2011) Game-theoretic rough sets. Fund Inform 108(3–4):267–286. https://doi.org/10.3233/FI-2011-423

    Article  MathSciNet  MATH  Google Scholar 

  13. Zhang Y, Yao J (2017) Multi-criteria based three-way classifications with game-theoretic rough sets. In: Kryszkiewicz M, Appice A, Ślęzak D, Rybinski H, Skowron A, Raś Z (eds) Foundations of intelligent systems. Lecture Notes in Computer Science, vol 10352. Springer, Cham, pp 550–559. https://doi.org/10.1007/978-3-319-60438-1_54

  14. Zhai J, Qi J, Zhang S (2021) Imbalanced data classification based on diverse sample generation and classifier fusion. Int J Mach Learn Cybern 13:735–750. https://doi.org/10.1007/s13042-021-01321-9

    Article  Google Scholar 

  15. Rehman N, Ali A, Liu P, Hila K (2021) A comprehensive study of upward fuzzy preference relation based fuzzy rough set models: properties and applications in treatment of coronavirus disease. Int J Intell Syst 36:3704–3745. https://doi.org/10.1002/int.22433

    Article  Google Scholar 

  16. Qian Y, Liang J, Pedrycz W, Dang C (2010) Positive approximation: an accelerator for attribute reduction in rough set theory. Artif Intell 174(9–10):597–618. https://doi.org/10.1016/j.artint.2010.04.018

    Article  MathSciNet  MATH  Google Scholar 

  17. Zhang Q, Shen W (2014) Research on attribute reduction algorithm with weights. J Intell Fuzzy Syst 27(2):1011–1019. https://doi.org/10.3233/IFS-131062

    Article  MathSciNet  MATH  Google Scholar 

  18. Zhang X, Fan Y, Yang J (2021) Feature selection based on fuzzy-neighborhood relative decision entropy. Pattern Recogn Lett 146:100–107. https://doi.org/10.1016/j.patrec.2021.03.001

    Article  Google Scholar 

  19. Zhan J, Jiang H, Yao Y (2020) Three-way multi-attribute decision-making based on outranking relations. IEEE T Fuzzy Syst 29(10):2844–2858. https://doi.org/10.1109/TFUZZ.2020.3007423

  20. Jia X, Rao Y, Shang L, Li T (2020) Similarity-based attribute reduction in rough set theory: a clustering perspective. Int J Mach Learn Cybern 11(5):1047–1060. https://doi.org/10.1007/s13042-019-00959-w

    Article  Google Scholar 

  21. Benítez-Caballero MJ, Medina J, Ramírez-Poussa E, Ślȩzak D (2020) Rough-set-driven approach for attribute reduction in fuzzy formal concept analysis. Fuzzy Sets Syst 391:117–138. https://doi.org/10.1016/j.fss.2019.11.009

    Article  MathSciNet  MATH  Google Scholar 

  22. Wang C, Wang Y, Shao M, Qian Y, Chen D (2019) Fuzzy rough attribute reduction for categorical data. IEEE T Fuzzy Syst 28(5):818–830. https://doi.org/10.1109/TFUZZ.2019.2949765

    Article  Google Scholar 

  23. Wang Z, Wei L, Qi J, Qian T (2020) Attribute reduction of SE-ISI concept lattices for incomplete contexts. Soft Comput 24(20):15143–15158. https://doi.org/10.1007/s00500-020-05271-2

    Article  MATH  Google Scholar 

  24. Wang C, Huang Y, Shao M, Fan X (2019) Fuzzy rough set-based attribute reduction using distance measures. Knowl-Based Syst 164:205–212. https://doi.org/10.1016/j.knosys.2018.10.038

    Article  Google Scholar 

  25. Yao Y, Mi J, Li Z (2011) Attribute reduction based on generalized fuzzy evidence theory in fuzzy decision systems. Fuzzy Sets Syst 170(1):64–75. https://doi.org/10.1016/j.fss.2011.01.008

    Article  MathSciNet  MATH  Google Scholar 

  26. Jiang Z, Yang X, Yu H, Liu D, Wang P, Qian Y (2019) Accelerator for multi-granularity attribute reduction. Knowl-Based Syst 177:145–158. https://doi.org/10.1016/j.knosys.2019.04.014

    Article  Google Scholar 

  27. Zhang X, Miao D (2017) Three-way attribute reducts. Int J Approx Reason 88:401–434. https://doi.org/10.1016/j.ijar.2017.06.008

    Article  MathSciNet  MATH  Google Scholar 

  28. Jing Y, Li T, Fujita H, Wang B, Cheng N (2018) An incremental attribute reduction method for dynamic data mining. Inf Sci 465:202–218. https://doi.org/10.1016/j.ins.2018.07.001

    Article  MathSciNet  MATH  Google Scholar 

  29. Qian J, Dang C, Yue X, Zhang N (2017) Attribute reduction for sequential three-way decisions under dynamic granulation. Int J Approx Reason 85:196–216. https://doi.org/10.1016/j.ijar.2017.03.009

    Article  MathSciNet  MATH  Google Scholar 

  30. Ma F, Ding M, Zhang T, Cao J (2019) Compressed binary discernibility matrix based incremental attribute reduction algorithm for group dynamic data. Neurocomputing 344:20–27. https://doi.org/10.1016/j.neucom.2018.01.094

    Article  Google Scholar 

  31. Zhang C, Dai J (2020) An incremental attribute reduction approach based on knowledge granularity for incomplete decision systems. Granular Comput 5(4):545–559. https://doi.org/10.1007/s41066-019-00173-7

    Article  Google Scholar 

  32. Singh S, Shreevastava S, Som T (2019) Attribute reduction of incomplete information systems: an intuitionistic fuzzy rough set approach. In: Castillo O, Jana D, Giri D, Ahmed A (eds) Recent advances in intelligent information systems and applied mathematics. Studies in Computational Intelligence, vol 863. Springer, Cham, pp 628–643. https://doi.org/10.1007/978-3-030-34152-7_48

  33. Xie X, Qin X (2018) A novel incremental attribute reduction approach for dynamic incomplete decision systems. Int J Approx Reason 93:443–462. https://doi.org/10.1016/j.ijar.2017.12.002

    Article  MathSciNet  MATH  Google Scholar 

  34. Jia X, Shang L, Zhou B, Yao Y (2016) Generalized attribute reduct in rough set theory. Knowl-Based Syst 91:204–218. https://doi.org/10.1016/j.knosys.2015.05.017

    Article  Google Scholar 

  35. Atanassov KT (1986) Intuitionistic fuzzy sets. Fuzzy Sets Syst 20:87–96. https://doi.org/10.1016/S0165-0114(86)80034-3

    Article  MATH  Google Scholar 

  36. Atanassov KT (1999) Intuitionistic fuzzy sets theory and applications. Physica-Verlag, Heidelberg

    Book  MATH  Google Scholar 

  37. Xin X, Sun J, Xue Z, Song J, Peng W (2021) A novel intuitionistic fuzzy three-way decision model based on an intuitionistic fuzzy incomplete information system. Int J Mach Learn Cybern 13:907–927. https://doi.org/10.1007/s13042-021-01426-1

    Article  Google Scholar 

  38. Garg H, Kaur G (2020) Novel distance measures for cubic intuitionistic fuzzy sets and their applications to pattern recognitions and medical diagnosis. Granular Comput 5(2):169–184. https://doi.org/10.1007/s41066-018-0140-3

    Article  Google Scholar 

  39. Yu D, Xu Z (2020) Intuitionistic fuzzy two-sided matching model and its application to personnel-position matching problems. J Oper Res Soc 71(2):312–321. https://doi.org/10.1080/01605682.2018.1546662

    Article  Google Scholar 

  40. Xu Z, Chen J, Wu J (2008) Clustering algorithm for intuitionistic fuzzy sets. Inf Sci 178(19):3775–3790. https://doi.org/10.1016/j.ins.2008.06.008

    Article  MathSciNet  MATH  Google Scholar 

  41. Collins AG, Frank MJ (2013) Cognitive control over learning: creating, clustering, and generalizing task-set structure. Psychol Rev 120(1):190–229. https://doi.org/10.1037/a0030852

    Article  Google Scholar 

  42. Yu H (2017) A framework of three-way cluster analysis. In: Proceedings of the International Joint Conference on Rough Sets. Lecture Notes in Computer Science, vol 10314. Springer, Cham, pp 300–312. https://doi.org/10.1007/978-3-319-60840-2_22

  43. Dengfeng L, Chuntian C (2002) New similarity measures of intuitionistic fuzzy sets and application to pattern recognitions. Pattern Recogn Lett 23(1–3):221–225. https://doi.org/10.1016/S0167-8655(01)00110-6

    Article  MATH  Google Scholar 

  44. Grzegorzewski P (2004) Distances between intuitionistic fuzzy sets and/or interval-valued fuzzy sets based on the Hausdorff metric. Fuzzy Sets Syst 148(2):319–328. https://doi.org/10.1016/j.fss.2003.08.005

    Article  MathSciNet  MATH  Google Scholar 

  45. Yao Y (2010) Three-way decisions with probabilistic rough sets. Inf Sci 180(3):341–353. https://doi.org/10.1016/j.ins.2009.09.021

    Article  MathSciNet  Google Scholar 

  46. Wang G (2017) DGCC: data-driven granular cognitive computing. Granular Comput 2(4):343–355. https://doi.org/10.1007/s41066-017-0048-3

    Article  Google Scholar 

  47. Snell J, Swersky K, Zemel RS (2017) Prototypical networks for few-shot learning. In: Adv Neural Inf Process Syst, pp 4077–4087

  48. Maji PK (2009) More on intuitionistic fuzzy soft sets. In: Sakai H, Chakraborty MK, Hassanien AE, Ślęzak D, Zhu W (eds) Rough sets, fuzzy sets, Data Mining and Granular Computing. Lecture Notes in Computer Science, vol 5908. Springer, Berlin, Heidelberg, pp 231–240. https://doi.org/10.1007/978-3-642-10646-0_28

  49. Wang C, Huang Y, Ding W, Cao Z (2021) Attribute reduction with fuzzy rough self-information measures. Inf Sci 549:68–86. https://doi.org/10.1016/j.ins.2020.11.021

    Article  MathSciNet  MATH  Google Scholar 

  50. Hu Q, Yu D, Xie Z, Liu J (2006) Fuzzy probabilistic approximation spaces and their information measures. IEEE T Fuzzy Syst 14(2):191–201. https://doi.org/10.1109/TFUZZ.2005.864086

    Article  Google Scholar 

  51. Wang C, Qi Y, Shao M, Hu Q, Chen D, Qian Y, Lin Y (2016) A fitting model for feature selection with fuzzy rough sets. IEEE T Fuzzy Syst 25(4):741–753. https://doi.org/10.1109/TFUZZ.2016.2574918

    Article  Google Scholar 

  52. Chen D, Zhang L, Zhao S, Hu Q, Zhu P (2012) A novel algorithm for finding reducts with fuzzy rough sets. IEEE Trans Fuzzy Syst 20(2):385–389. https://doi.org/10.1109/TFUZZ.2011.2173695

    Article  Google Scholar 

  53. Sun L, Zhang X, Qian Y, Xu J, Zhang S (2019) Feature selection using neighborhood entropy-based uncertainty measures for gene expression data classification. Inf Sci 502:18–41. https://doi.org/10.1016/j.ins.2019.05.072

    Article  MathSciNet  MATH  Google Scholar 

  54. Du W, Hu B (2018) A fast heuristic attribute reduction approach to ordered decision systems. Eur J Oper Res 264(2):440–452. https://doi.org/10.1016/j.ejor.2017.03.029

    Article  MathSciNet  MATH  Google Scholar 

  55. Sang B, Chen H, Yang L, Zhou D, Li T, Xu W (2021) Incremental attribute reduction approaches for ordered data with time-evolving objects. Knowl-Based Syst 212:106583. https://doi.org/10.1016/j.knosys.2020.106583

    Article  Google Scholar 

  56. Hu M, Tsang EC, Guo Y, Xu W (2021) Fast and robust attribute reduction based on the separability in fuzzy decision systems. IEEE T Cybern PP:1–14. https://doi.org/10.1109/TCYB.2020.3040803

    Article  Google Scholar 

  57. Xia S, Zhang Z, Li W, Wang G, Giem E, Chen Z (2020) GBNRS: a novel rough set algorithm for fast adaptive attribute reduction in classification. IEEE T Knowl Data Eng. https://doi.org/10.1109/TKDE.2020.2997039

  58. Wang C, Shi Y, Fan X, Shao M (2019) Attribute reduction based on k-nearest neighborhood rough sets. Int J Approx Reason 106:18–31. https://doi.org/10.1016/j.ijar.2018.12.013

    Article  MathSciNet  MATH  Google Scholar 

  59. Wang C, He Q, Shao M, Hu Q (2018) Feature selection based on maximal neighborhood discernibility. Int J Mach Learn Cybern 9(11):1929–1940. https://doi.org/10.1007/s13042-017-0712-6

    Article  Google Scholar 

  60. Hu Q, Liu J, Yu D (2008) Mixed feature selection based on granulation and approximation. Knowl-Based Syst 21:294–309. https://doi.org/10.1016/j.knosys.2007.07.001

    Article  Google Scholar 

  61. Zhao S, Chen H, Li C, Du X, Sun H (2014) A novel approach to building a robust fuzzy rough classifier. IEEE T Fuzzy Syst 23(4):769–786. https://doi.org/10.1109/TFUZZ.2014.2327993

    Article  Google Scholar 

  62. Liang J, Wang F, Dang C, Qian Y (2014) A group incremental approach to feature selection applying rough set technique. IEEE T Knowl Data Eng 26(2):294–308. https://doi.org/10.1109/TKDE.2012.146

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grants No. 61877004 and No. 62007004), the Major Program of the National Social Science Foundation of China (Grant No. 18ZDA295) and the Doctoral Interdisciplinary Foundation Project of Beijing Normal University (Grant No. BNUXKJC2020).

Author information

Authors and Affiliations

Authors

Contributions

X.X.: Data curation, Investigation, Resources, Software & Writing-original draft. C.L. and J.B.: Conceptualization, Methodology. J.H.: Supervision, Writing-review & Editing. Z.A.: Formal analysis, Project administration. W.M.: Funding acquisition, Writing-review & editing.

Corresponding author

Correspondence to Wei-ming Peng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

Proof of Theorem 1

(1) ∀aj ∈ A, when \( \mid {\left[x\right]}_j^{\mathcal{R}}\mid =1 \), \( {CH}^{\mathcal{R}}=0 \), and when \( \mid {\left[x\right]}_j^{\mathcal{R}}\mid =U \), \( {CH}^{\mathcal{R}}=\frac{1}{\mid U\mid }{\mathit{\log}}_2\mid U\mid \). Because \( {CH}^{\mathcal{R}}=\frac{1}{\mid U\mid }{\mathit{\log}}_2\mid U\mid =\frac{\mathit{\log}\mid U\mid }{\mid U\mid \mathit{\log}(2)} \)(log(x) is the nature logarithm) and ∣U ∣  ≥ 1, the critical value of \( {CH}^{\mathcal{R}} \) is \( \frac{d}{d\mid U\mid}\left(\frac{{\mathit{\log}}_2\mid U\mid }{\mid U\mid}\right)=\frac{1-\mathit{\log}\mid U\mid }{{\left|U\right|}^2\mathit{\log}(2)} \), and we can obtain ∣U ∣  = e, i.e., the corresponding value of \( {CH}^{\mathcal{R}} \) is \( \frac{1}{eln(2)} \). Property (2) can be directly proven by Property (1).

Proof of Theorem 2

The third rule in Definition 2 is obviously satisfied. The following proves rules (1), (2) and (4).

  • (1) Let \( {\mu}^{\ast }=\left|\Big({\mu}_{\overset{\sim }{A}}(x)-{\mu}_{\overset{\sim }{B}}(x)\right|\in \left[0,1\right] \), \( {\nu}^{\ast }=\left|\Big({\nu}_{\overset{\sim }{A}}(x)-{\nu}_{\overset{\sim }{B}}(x)\right|\in \left[0,1\right] \). When μ = ν = 0, let \( {\mu}^{\ast {CH}^{\mathcal{R}}}=0 \). Since Eq. (3) can be transformed into \( S\left(\overset{\sim }{A}(x),\overset{\sim }{B}(x)\right)=\frac{1}{2}\left(1-{\mathit{\log}}_2\left({\left|\Big({\mu}_{\overset{\sim }{A}}(x)-{\mu}_{\overset{\sim }{B}}(x)\right|}^{CH^{\succ }}+1\right)+1-{\mathit{\log}}_2\left({\left|\Big({\nu}_{\overset{\sim }{A}}(x)-{\nu}_{\overset{\sim }{B}}(x)\right|}^{CH^{\succ }}+1\right)\right) \), we will prove it in two parts: membership and nonmembership. In terms of membership degree, let \( {S}_{\mu}\left(\overset{\sim }{A}(x),\overset{\sim }{B}(x)\right)=1-\mathrm{lo}{\mathrm{g}}_2\left({\mu}^{\ast {CH}^{\succ }}+1\right) \). When μ = 0, i.e., \( {\mu}_{\overset{\sim }{A}}(x)=1\left(\mathrm{or}{\mu}_{\overset{\sim }{A}}(x)=0\right),{\nu}_{\overset{\sim }{B}}(x)=0\left(\mathrm{or}{\nu}_{\overset{\sim }{B}}(x)=1\right) \), we have \( \mathrm{lo}{\mathrm{g}}_2\left({\mu}^{\ast {CH}^{\succ }}+1\right)=0 \), \( {S}_{\mu}\left(\overset{\sim }{A}(x),\overset{\sim }{B}(x)\right)=0 \), and when μ = 1, i.e., \( {\mu}_{\overset{\sim }{A}}(x)={\mu}_{\overset{\sim }{B}}(x),{\nu}_{\overset{\sim }{A}}(x)={\nu}_{\overset{\sim }{B}}(x) \), we can obtain \( \mathrm{lo}{\mathrm{g}}_2\left({\mu}^{\ast {CH}^{\succ }}+1\right)=1 \), \( {S}_{\mu}\left(\overset{\sim }{A}(x),\overset{\sim }{B}(x)\right)=1-1=0 \). For the nonmember part, we obtain \( {S}_{\nu}\left(\overset{\sim }{A}(x),\overset{\sim }{B}(x)\right)\in \left[0,1\right] \). Therefore, \( S\left(\overset{\sim }{A},\overset{\sim }{B}\right)={S}_{\mu}\left(\overset{\sim }{A},\overset{\sim }{B}\right)+{S}_{\nu}\left(\overset{\sim }{A},\overset{\sim }{B}\right)=\frac{1}{2}\left(1-\mathrm{lo}{\mathrm{g}}_2\left({\mu}^{\ast {CH}^{\succ }}+1\right)+1-\mathrm{lo}{\mathrm{g}}_2\left({\nu}^{\ast {CH}^{\succ }}+1\right)\right) \), which simplifies to \( S\left(\overset{\sim }{A}(x),\overset{\sim }{B}(x)\right)=1-\frac{1}{2}\mathrm{lo}{\mathrm{g}}_2\left({\mu}^{\ast {CH}^{\succ }}+1\right)\left({\nu}^{\ast {CH}^{\succ }}+1\right)\in \left[0,1\right] \).

  • (2) By rule (1), \( S\left(\overset{\sim }{A},\overset{\sim }{B}\right)=1 \) holds if and only if \( \overset{\sim }{A}=\overset{\sim }{B} \).

  • (4) From \( \overset{\sim }{A}(x)\subseteq \overset{\sim }{B}(x)\subseteq \overset{\sim }{C}(x) \), we have \( {\mu}_{\overset{\sim }{A}}(x)\le {\mu}_{\overset{\sim }{B}}(x)\le {\mu}_{\overset{\sim }{C}}(x),{\nu}_{\overset{\sim }{A}}(x)\ge {\nu}_{\overset{\sim }{B}}(x)\ge {\nu}_{\overset{\sim }{C}}(x) \). Because\( \left|{\mu}_{\overset{\sim }{A}}(x)-{\mu}_{\overset{\sim }{C}}(x)\right|\ge \) \( \left|{\mu}_{\overset{\sim }{A}}(x)-{\mu}_{\overset{\sim }{B}}(x)\right| \) and \( \mathrm{lo}{\mathrm{g}}_2\left({\mu}^{\ast {CH}^{\succ }}+1\right) \) is an increasing function in the definition field [0, 1],\( \mathrm{lo}{\mathrm{g}}_2\left(\left|{\mu}_{\overset{\sim }{A}}(x)-{\nu}_{\overset{\sim }{C}}(x)\right|+1\right)\ge \) \( \mathrm{lo}{\mathrm{g}}_2\left(\left|{\mu}_{\overset{\sim }{A}}(x)-{\nu}_{\overset{\sim }{B}}(x)\right|+1\right) \) and \( {S}_{\mu}\left(\overset{\sim }{A}(x),\overset{\sim }{C}(x)\right)\le {S}_{\mu}\left(\overset{\sim }{A}(x),\overset{\sim }{B}(x)\right) \) hold. Meanwhile, \( \left|{\nu}_{\overset{\sim }{A}}(x)-{\nu}_{\overset{\sim }{C}}(x)\right|\ge \left|{\nu}_{\overset{\sim }{A}}(x)-{\nu}_{\overset{\sim }{B}}(x)\right| \); we have \( {S}_{\nu}\left(\overset{\sim }{A}(x),\overset{\sim }{C}(x)\right)\le {S}_{\nu}\left(\overset{\sim }{A}(x),\overset{\sim }{B}(x)\right) \). Therefore, \( {S}_{\mu}\left(\overset{\sim }{A}(x),\overset{\sim }{C}(x)\right)+{S}_{\nu}\left(\overset{\sim }{A}(x),\overset{\sim }{C}(x)\right)\le {S}_{\mu}\left(\overset{\sim }{A}(x),\overset{\sim }{B}(x)\right)+{S}_{\nu}\left(\overset{\sim }{A}(x),\overset{\sim }{B}(x)\right) \), i.e., \( S\left(\overset{\sim }{A}(x),\overset{\sim }{C}(x)\right)\le S\left(\overset{\sim }{A}(x),\overset{\sim }{B}(x)\right) \). In an analogous manner, we can obtain \( S\left(\overset{\sim }{A}(x),\overset{\sim }{C}(x)\right)\le S\left(\overset{\sim }{B}(x),\overset{\sim }{C}(x)\right) \).

In summary, \( S\left(\overset{\sim }{A}(x),\overset{\sim }{B}(x)\right) \) is an IFCS between intuitionistic fuzzy sets (IFSs) \( \overset{\sim }{A}(x) \) and \( \overset{\sim }{B}(x) \).

Appendix B

1.1 Abbreviations

3WD

three-way decision

POS

positive

IFCS

intuitionistic fuzzy cognition similarity

NEG

negative

IFCE

intuitionistic fuzzy cognitive entropy

BND

boundary

CLDK

cognition level of domain knowledge

IS

irreducible set

CDF

cumulative distribution function

RS

reducible set

IF3WCC

intuitionistic fuzzy three-way cognitive clustering

PRS

possibly reducible set

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xin, Xw., Shi, Cl., Sun, Jb. et al. A novel attribute reduction method based on intuitionistic fuzzy three-way cognitive clustering. Appl Intell 53, 1744–1758 (2023). https://doi.org/10.1007/s10489-022-03496-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-022-03496-2

Keywords

Navigation