Skip to main content
Log in

Elastic roadmaps—motion generation for autonomous mobile manipulation

  • Published:
Autonomous Robots Aims and scope Submit manuscript

Abstract

The autonomous execution of mobile manipulation tasks in unstructured, dynamic environments requires the consideration of various motion constraints. The task itself imposes constraints, of course, but so do the kinematic and dynamic limitations of the manipulator, unpredictably moving obstacles, and the global connectivity of the workspace. All of these constraints need to be updated continuously in response to sensor feedback. We present the elastic roadmap framework, a novel feedback motion planning approach capable of satisfying all of these motion constraints and their respective feedback requirements. This framework is validated in simulation and real-world experiments using a mobile manipulation platform and a stationary manipulator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amato, N., Bayazit, B., Dale, L., Jones, C., & Vallejo, D. (1998). OBPRM: An obstacle-based PRM for 3D workspaces. In Robotics: The algorithmic perspective. Wellesley: AK Peters.

    Google Scholar 

  • Barraquand, J., & Latombe, J.-C. (1991). Robot motion planning: A distributed representation approach. International Journal of Robotics Research, 10(6), 628–649.

    Article  Google Scholar 

  • Brock, O., & Grupen, R. (2005). Final report for the NSF/NASA Workshop on Autonomous Mobile Manipulation (AMM), November 2005. http://rbo.cs.umass.edu/amm/results.html.

  • Brock, O., & Kavraki, L. E. (2001). Decomposition-based motion planning: A framework for real-time motion planning in high-dimensional configuration spaces. In Proc. int. conf. on robotics and automation.

  • Brock, O., & Khatib, O. (2002). Elastic strips: A framework for motion generation in human environments. International Journal of Robotics Research, 21(12), 1031–1052.

    Article  Google Scholar 

  • Burns, B., & Brock, O. (2005). Toward optimal configuration space sampling. In Proceedings of robotics: Science and systems (RSS).

  • Burridge, R. R., Rizzi, A. A., & Koditschek, D. E. (1999). Sequential composition of dynamically dexterous robot behaviors. International Journal of Robotics Research, 18(6), 534–555.

    Article  Google Scholar 

  • Chang, K.-S., & Khatib, O. (2000). Operational space dynamics: Efficient algorithms for modelling and control of branching mechanisms. In Proc. int. conf. on robotics and automation (pp. 850–856).

  • Chen, P. C., & Hwang, Y. K. (1998). SANDROS: A dynamic graph search algorithm for motion planning. IEEE Transactions on Robotics and Automation, 14(3), 390–403.

    Article  Google Scholar 

  • Choi, W., & Latombe, J.-C. (1991). A reactive architecture for planning and executing robot motions with incomplete knowledge. In Proc. int. conf. on intelligent robots and systems (Vol. 1, pp. 24–29).

  • Choset, H., Lynch, K. M., Hutchinson, S., Kantor, G., Burgard, W., Kavraki, L. E., & Thrun, S. (2005). Principles of robot motion. Cambridge: MIT Press.

    MATH  Google Scholar 

  • Conner, D. C., Rizzi, A. A., & Choset, H. (2003). Composition of local potential functions for global robot control and navigation. In Proc. int. conf. on intelligent robots and systems (pp. 3546–3551).

  • Conner, D., Choset, H., & Rizzi, A. (2006). Integrated planning and control for convex-bodied nonholonomic systems using local feedback control policies. In Proceedings of robotics: Science and systems, Philadelphia, USA, August 2006.

  • Connolly, C. I., & Grupen, R. A. (1993). One the applications of harmonic functions to robotics. Journal of Robotic Systems, 10(7), 931–946.

    Article  MATH  Google Scholar 

  • Cortés, J., Jaillet, L., & Siméon, T. (2008). Disassembly path planning for complex articulated objects. IEEE Transactions on Robotics.

  • Diankov, R., Ratliff, N., Ferguson, D., Srinivasa, S., & Kuffner, J. (2008). Bispace planning: Concurrent multi-space exploration. In Proceedings of robotics: Science and systems (RSS), ETH Zurich, June 2008.

  • Franklin, G. F., Powell, J. D., & Emami-Naeini, A. (1994). Feedback control of dynamic systems. Reading: Addison-Wesley.

    Google Scholar 

  • Garber, M., & Lin, M. C. (2002). Constraint-based motion planning using Voronoi diagrams. In Proc. of the workshop on the algorithmic foundations of robotics.

  • Gayle, R., Klingler, K. R., & Xavier, P. G. (2007). Lazy reconfiguration forest (LRF): An approach for motion planning with mulitple tasks in dynamic environments. In Proc. int. conf. on robotics and automation.

  • Hauser, K., Bretl, T., Harada, K., & Latombe, J.-C. (2006). Using motion primitives in probabilistic sample-based planning for humanoid robots. In Proc. of the workshop on the algorithmic foundations of robotics (pp. 507–522).

  • Hsu, D., Kindel, R., Latombe, J.-C., & Rock, S. (2000). Randomized kinodynamic motion planning with moving obstacles. In Proc. of the workshop on the algorithmic foundations of robotics (pp. 247–264).

  • Hsu, D., Latombe, J.-C., & Kurniawati, H. (2005a). On the probabilistic foundations of probabilistic roadmap planning. In Proceedings of the international symposium of robotics research.

  • Hsu, D., Sánchez-Ante, G., & Sun, Z. (2005b). Hybrid prm sampling with a cost-sensitive adaptive strategy. In Proc. int. conf. on robotics and automation.

  • Huber, M., & Grupen, R. A. (1997). A feedback control structure for on-line learning tasks. Robotics and Autonomous Systems, 22(3–4), 303–315.

    Article  Google Scholar 

  • Jaillet, L., & Siméon, T. (2004). A PRM-based motion planner for dynamically changing environments. In Proc. int. conf. on intelligent robots and systems.

  • Jaillet, L., & Siméon, T. (2008). Path deformation roadmaps: compact graphs with useful cycles for motion planning. International Journal of Robotics Research.

  • Kallmann, M., & Matarić, M. (2004). Motion planning using dynamic roadmaps. In Proc. int. conf. on robotics and automation (pp. 4399–4404).

  • Kavraki, L. E., Švestka, P., Latombe, J.-C., & Overmars, M. H. (1996). Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Transactions on Robotics and Automation, 12(4), 566–580.

    Article  Google Scholar 

  • Khatib, O. (1987). A unified approach to motion and force control of robot manipulators: The operational space formulation. International Journal of Robotics and Automation, 3(1), 43–53.

    Article  Google Scholar 

  • Kuffner, J., & LaValle, S. M. (2000). RRT-connect: An efficient approach to single-query path planning. In Proc. int. conf. on robotics and automation (Vol. 2, pp. 995–1001).

  • Kurniawati, H., & Hsu, D. (2004). Workspace importance sampling for probabilistic roadmap planning. In Proc. int. conf. on intelligent robots and systems (pp. 1618–1623).

  • LaValle, S. M. (2006). Planning algorithms. Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  • Leven, P., & Hutchinson, S. (2002). A framework for real-time path planning in changing environments. International Journal of Robotics Research, 21(12), 999–1030.

    Article  Google Scholar 

  • Lindemann, S. R., Hussein, I. I., & LaValle, S. M. (2006). Real time feedback control for nonholonomic mobile robots with obstacles. In Proceedings of the IEEE conference on decision and control (pp. 2406–2411). San Diego, USA, December 2006.

  • Morales, M., Tapia, L., Pearce, R., Rodriguez, S., & Amato, N. M. (2004). A machine learning approach for feature-sensitive motion planning. In Proc. of the workshop on the algorithmic foundations of robotics, Utrecht/Zeist, The Netherlands.

  • Oriolo, G., & Mongillo, C. (2005). Motion planning for mobile manipulators along given ed-effector paths. In Proc. int. conf. on robotics and automation (pp. 2166–2172). Barcelona, Spain.

  • Plaku, E., Kavraki, L. E., & Vardi, M. Y. (2007). Discrete search leading continuous exploration for kinodynamic motion planning. In Proceedings of robotics: Science and systems (RSS) (pp. 313–320). Atlanta, USA, June 2007.

  • Quinlan, S., & Khatib, O. (1993). Elastic bands: Connecting path planning and control. In Proc. int. conf. on robotics and automation (Vol. 2, pp. 802–807). Atlanta, USA.

  • Rimon, E., & Koditschek, D. E. (1992). Exact robot navigation using artificial potential fields. IEEE Transactions on Robotics and Automation, 8(5), 501–518.

    Article  Google Scholar 

  • Sato, K. (1987). Collision avoidance in multi-dimensional space using Laplace potential. In Proceedings of the 15th conference of the robotics society of Japan (pp. 155–156).

  • Sentis, L., & Khatib, O. (2005). Synthesis of whole-body behaviors through hierarchical control of behavioral primitives. International Journal of Humanoid Robots, 2(4), 505–518.

    Article  Google Scholar 

  • Siméon, T., Laumond, J.-P., & Nissoux, C. (2000). Visibility-based probabilistic roadmaps for motion planning. Journal of Advanced Robotics, 14(6), 477–494.

    Article  Google Scholar 

  • Siméon, T., Laumonde, J.-P., Cortés, J., & Sahbani, A. (2004). Manipulation planning with probabilistic roadmaps. International Journal of Robotics Research, 23(7–8), 729–746.

    Google Scholar 

  • Stilman, M. (2007). Task constrained motion planning in robot joint space. In Proc. int. conf. on intelligent robots and systems, October 2007.

  • Tang, X., Thomas, S., & Amato, N. M. (2005). Planning with reachable distances: Fast enforcement of closure constraints. In Proc. int. conf. on robotics and automation (pp. 2694–2699). Rome, Italy.

  • van den Berg, J. P., & Overmars, M. H. (2004). Using workspace information as a guide to non-uniform sampling in probabilistic roadmap planners. In Proc. int. conf. on robotics and automation (pp. 453–460).

  • van den Berg, J. P., & Overmars, M. H. (2005). Roadmap-based motion planning in dynamic environments. IEEE Transactions on Robotics and Automation, 21(5), 885–897.

    Google Scholar 

  • Vannoy, J., & Xiao, J. (2004). Real-time adaptive and trajectory-optimized manipulator motion planning. In Proc. int. conf. on intelligent robots and systems (Vol. 1, pp. 497–502).

  • Yang, Y., & Brock, O. (2004). Adapting the sampling distribution in PRM planners based on an approximated medial axis. In Proc. int. conf. on robotics and automation (pp. 4405–4410).

  • Yang, Y., & Brock, O. (2005). Efficient motion planning based on disassembly. In Proceedings of robotics: Science and systems (RSS).

  • Yang, Y., & Brock, O. (2006). Elastic roadmaps: Globally task-consistent motion for autonomous mobile manipulation in dynamic environments. In Proceedings of robotics: Science and systems (RSS).

  • Yang, L., & LaValle, S. M. (2003). The sampling-based neighborhood graph: A framework for planning and executing feedback motion strategies. In Proc. int. conf. on robotics and automation.

  • Yao, Z., & Gupta, K. (2007). Path planning with general end-effector constraints. Robotics and Autonomous Systems, 55(4), 315–327.

    Article  Google Scholar 

  • Zucker, M., Kuffner, J., & Bagnell, J. (2008). Adaptive workspace biasing for sampling-based planners. In Proc. int. conf. on robotics and automation (pp. 3757–3762). Pasadena, CA, May 2008.

  • Zucker, M., Kuffner, J., & Branicky, M. (2007). Multipartite RRTs for rapid replanning in dynamic environments. In Proc. int. conf. on robotics and automation (pp. 1603–1609). Roma, Italy, April 2007.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver Brock.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, Y., Brock, O. Elastic roadmaps—motion generation for autonomous mobile manipulation. Auton Robot 28, 113–130 (2010). https://doi.org/10.1007/s10514-009-9151-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10514-009-9151-x

Keywords

Navigation