Skip to main content
Log in

Accurate tracking of legged robots on natural terrain

  • Published:
Autonomous Robots Aims and scope Submit manuscript

Abstract

Statically stable walking locomotion research has focused mainly on robot design and gait generation. However, there is a need to expand robots’ capabilities so that walking machines can accomplish the kinds of real tasks for which they are eminently suited. Many such tasks demand trajectory tracking, but researchers have traditionally ignored this subject. This article focuses on the tracking of predefined trajectories with hexapod robots walking on natural terrain with forbidden zones. The method presented herein, which relies on gait algorithms defined elsewhere, describes certain localization strategies and control techniques that have been employed to follow trajectories accurately and have been implemented in a real walking hexapod. Several experimental examples are included to assess the proposed algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Acar, E., & Choset, H. (2001). Robust sensor-based coverage of unstructured environments. In Proceedings of the international conference on intelligent robots and systems, Maui, Hawaii, pp. 61–68.

  • Bai, S., & Low, K. H. (2001). Body trajectory generation for legged locomotion systems using a terrain evaluation approach. In Proceedings of the 2001 IEEE international conference on robotics and automation, Seoul, Korea, May 21–26, pp. 2279–2284.

  • Catalbiano, D., Muscato, G., & Russo, F. (2004). Localization and self calibration of a robot for volcano exploration. In Proc. IEEE int. conf. on robotics and automation, pp. 586–591. New Orleans, LA.

  • Choset, H., & Pignon, P. (1997). Coverage path planning: the boustrophedon cellular decomposition. In Proceedings of the international conference on field and service robotics, Canberra, Australia.

  • Cobano, J. A. (2007). Localization and trajectory tracking with walking robots in natural environments. Ph.D. Thesis, University Complutense of Madrid.

  • Cobano, J. A., Estremera, J., & Gonzalez de Santos, P. (2008). Location of legged robots in outdoor environment. Robotics and Autonomous Systems, 56, 751–761.

    Article  Google Scholar 

  • Estremera, J., & Gonzalez de Santos, P. (2002). Free gaits for quadruped robots over irregular terrain. The International Journal of Robotics Research, 21(2), 115–130.

    Article  Google Scholar 

  • Estremera, J., & Gonzalez de Santos, P. (2005). Generating continuous free crab gaits for quadruped robots on irregular terrain. IEEE Transactions on Robotics, 21(6), 1067–1076.

    Article  Google Scholar 

  • Estremera, J., Cobano, J. A., & Gonzalez de Santos, P. (2010, in press). Continuous free-crab gaits for hexapod robots on natural terrain with forbidden zones: an application to humanitarian demining. Robotics and Autonomous Systems. doi:10.1016/j.robot.2009.11.004

  • Garcia, E., & Gonzalez de Santos, P. (2004). Mobile robot navigation with complete coverage of unstructured environments. Robotics and Autonomous Systems, 46(4), 195–204.

    Article  Google Scholar 

  • Gassmann, B., Zacharias, F., Zöllner, J. M., & Dillmann, R. (2005). Localization of walking robots. In Proceedings of the 2005 IEEE, international conference on robotics and automation, pp. 1483–1488. Barcelona, Spain.

  • Gelb, A., Kasper, Jr., J. F., Nash, Jr., R. A., Price, C. F., & Sutherland, Jr., A. A. (1986). Applied optimal estimation. Cambridge: MIT.

    Google Scholar 

  • Gonzalez de Santos, P., & Jimenez, M. A. (1995a). Generation of discontinuous gaits for quadruped walking machines. Journal of Robotic Systems, 12(9), 599–611.

    Article  MATH  Google Scholar 

  • Gonzalez de Santos, P., & Jimenez, M. A. (1995b). Path tracking with quadruped walking machines using discontinuous gaits. Computers and Electrical Engineering, 21(6), 382–396.

    Google Scholar 

  • Gonzalez de Santos, P., Cobano, J. A., Garcia, E., Estremera, J., & Armada, M. A. (2007). A six-legged-robot based system for humanitarian demining missions. Mechatronics, 17, 417–430.

    Article  Google Scholar 

  • Kalman, R. E. (1960). A new approach to linear filtering and prediction problems. Transaction of the ASME-Journal of Basic Engineering, 82, 35–45.

    Google Scholar 

  • Lee, J. K., & Song, S. M. (1990). Path planning and gait of walking machine in an obstacle-strewn environment. Journal of Robotic Systems, 12(3), 801–827.

    MathSciNet  Google Scholar 

  • Longo, D., Muscato, G., & Sacco, V. (2002). Localization using fuzzy and Kalman filtering data fusion. In Proc. int. conf. climbing and walking robots, Paris, France.

  • Molfino, R., Armada, M., Cepolina, F., & Zoppi, M. (2005). ROBOCLIMBER the 3 ton spider. Industrial Robot, 32(2), 163–170.

    Article  Google Scholar 

  • Orin, D. (1982). Supervisory control of a multilegged robot. The International Journal of Robotic Research, 1(1), 79–91.

    Article  Google Scholar 

  • Roumeliotis, S. I., & Bekey, G. A. (1997). An extended Kalman filter for frequent local and infrequent global sensor data fusion. In Proceedings of the SPIE (sensor fusion and decentralized control in autonomous robotic systems), pp. 11–22. Pittsburgh, Pennsylvania.

  • SILO-6 (2008a). The SILO-6 and DYLEMA Projects’ Home Page. Available at: http://www.iai.csic.es/users/silo6/.

  • SILO-6 (2008b). The SILO-6 and DYLEMA Projects’ videos. Available at http://www.iai.csic.es/users/silo6/SILO6_pics/SILO6TrajectoryGPSx10.wmv.

  • Welch, G., & Bishop, G. (2004). An introduction to the Kalman filter. Department of Computer Science, University of North Carolina, Chapel Hill.

  • Zhang, F. (2007). Curve tracking control for legged locomotion. In Proceedings of the 2007 American control conference, New York, NY, July 11–13, pp. 2836–2841.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Gonzalez de Santos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cobano, J.A., Estremera, J. & Gonzalez de Santos, P. Accurate tracking of legged robots on natural terrain. Auton Robot 28, 231–244 (2010). https://doi.org/10.1007/s10514-009-9165-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10514-009-9165-4

Navigation