Skip to main content
Log in

Self-assembly strategies in a group of autonomous mobile robots

  • Published:
Autonomous Robots Aims and scope Submit manuscript

Abstract

Robots are said to be capable of self-assembly when they can autonomously form physical connections with each other. By examining different ways in which a system can use self-assembly (i.e., different strategies), we demonstrate and quantify the performance costs and benefits of (i) acting as a physically larger self-assembled entity, (ii) letting the system choose when and if to self-assemble, (iii) coordinating the sensing and actuation of the connected robots so that they respond to the environment as a single collective entity. Our analysis is primarily based on real world experiments in a hill crossing task. The configuration of the hill is not known by the robots in advance—the hill can be present or absent, and can vary in steepness and orientation. In some configurations, the robots can overcome the hill more quickly by navigating individually, while other configurations require the robots to self-assemble to overcome the hill. We demonstrate the applicability of our self-assembly strategies to two other tasks—hole crossing and robot rescue—for which we present further proof-of-concept experiments with real robots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, C., Theraulaz, G., & Deneubourg, J.-L. (2002). Self-assemblages in insect societies. Insectes Sociaux, 49(2), 99–110.

    Article  Google Scholar 

  • Bonabeau, E., Dorigo, M., & Theraulaz, G. (1999). Swarm intelligence: from natural to artificial systems. New York: Oxford University Press.

    MATH  Google Scholar 

  • Brown Jr., H. B., Weghe, J. M. V., Weghe, E., Bererton, C. A., & Khosla, P. K. (2002). Millibot trains for enhanced mobility. IEEE/ASME Transactions on Mechatronics, 7(4), 452–461.

    Article  Google Scholar 

  • Campbell, J., & Pillai, P. (2008). Collective actuation. International Journal of Robotics Research, 27(3–4), 299–314.

    Google Scholar 

  • Cao, Y. U., Fukunaga, A. S., & Kahng, A. B. (1997). Cooperative mobile robotics: antecedents and directions. Autonomous Robots, 4(1), 7–27.

    Article  Google Scholar 

  • Caspar, D. L. D. (1966). Design principles in organized biological structures. In Wolstenholme, G. E. W., & O’Connor, M. (Eds.), Principles of biomolecular organization (pp. 7–34). London: Churchill.

    Chapter  Google Scholar 

  • Castano, A., Behar, A., & Will, P. M. (2002). The Conro modules for reconfigurable robots. IEEE/ASME Transactions on Mechatronics, 7(4), 403–409.

    Article  Google Scholar 

  • Christensen, A. L., O’Grady, R., & Dorigo, M. (2008). SWARMORPH-script: a language for arbitrary morphology generation in self-assembling robots. Swarm Intelligence, 2(2–4), 143–165.

    Article  Google Scholar 

  • Dorigo, M. (2009). The swarmanoid project. http://www.swarmanoid.org.

  • Fukuda, T., & Nakagawa, S. (1988). Approach to the dynamically reconfigurable robotic system. Journal of Intelligent and Robotic Systems, 1(1), 55–72.

    Article  Google Scholar 

  • Funiak, S., Pillai, P., Ashley-Rollman, M. P., Campbell, J. D., & Goldstein, S. C. (2009). Distributed localization of modular robot ensembles. International Journal of Robotics Research, 28(8), 946–961.

    Article  Google Scholar 

  • Goldstein, S. C., Campbell, J. D., & Mowry, T. C. (2005). Programmable matter. Computer, 38(6), 99–101.

    Article  Google Scholar 

  • Groß, R., & Dorigo, M. (2004). Group transport of an object to a target that only some group members may sense. In Lecture notes in computer science : Vol. 3242. Parallel problem solving from nature—8th international conference (PPSN VIII) (pp. 852–861). Berlin: Springer.

    Google Scholar 

  • Groß, R., & Dorigo, M. (2008a). Evolution of solitary and group transport behaviors for autonomous robots capable of self-assembling. Adaptive Behavior, 16(5), 285–305.

    Article  Google Scholar 

  • Groß, R., & Dorigo, M. (2008b). Self-assembly at the macroscopic scale. Proceedings of the IEEE, 96(9), 1490–1508.

    Article  Google Scholar 

  • Groß, R., Bonani, M., Mondada, F., & Dorigo, M. (2006a). Autonomous self-assembly in swarm-bots. IEEE Transactions on Robotics, 22(6), 1115–1130.

    Article  Google Scholar 

  • Groß, R., Tuci, E., Dorigo, M., Bonani, M., & Mondada, F. (2006b). Object transport by modular robots that self-assemble. In Proceedings of the 2006 IEEE international conference on robotics and automation (pp. 2558–2564). Los Alamitos: IEEE Computer Society Press.

    Chapter  Google Scholar 

  • Hirose, S. (1993). Biologically inspired robots: snake-like locomotors and manipulators. New York: Oxford University Press.

    Google Scholar 

  • Hirose, S., Shirasu, T., & Fukushima, E. F. (1996). Proposal for cooperative robot “Gunryu” composed of autonomous segments. Robots and Autonomous Systems, 17(1–2), 107–118.

    Article  Google Scholar 

  • Ishiguro, A., Shimizu, M., & Kawakatsu, T. (2004). Don’t try to control everything!: an emergent morphology control of a modular robot. In Proceedings of the 2004 IEEE/RSJ international conference on intelligent robots and systems (Vol. 1, pp. 981–985). Los Alamitos: IEEE Computer Society Press.

    Google Scholar 

  • Kamimura, A., Kurokawa, H., Yoshida, E., Murata, S., Tomita, K., & Kokaji, S. (2005). Automatic locomotion design and experiments for a modular robotic system. IEEE/ASME Transactions on Mechatronics, 10(3), 314–325.

    Article  Google Scholar 

  • Mondada, F., Pettinaro, G. C., Guignard, A., Kwee, I. V., Floreano, D., Deneubourg, J.-L., Nolfi, S., Gambardella, L. M., & Dorigo, M. (2004). SWARM-BOT: a new distributed robotic concept. Autonomous Robots, 17(2–3), 193–221.

    Article  Google Scholar 

  • Mondada, F., Bonani, M., Guignard, A., Magnenat, S., Studer, C., & Floreano, D. (2005). Superlinear physical performances in a SWARM-BOT. In Lecture notes in artificial intelligence : Vol. 3630. 8th European conference on artificial life, ECAL 2005 (pp. 282–291). Berlin: Springer.

    Google Scholar 

  • Mumm, E., Farritor, S., Pirjanian, P., Leger, C., & Schenker, P. (2004). Planetary cliff descent using cooperative robots. Autonomous Robots, 16(3), 259–272.

    Article  Google Scholar 

  • Murata, S., Yoshida, E., Kamimura, A., Kurokawa, H., Tomita, K., & Kokaji, S. (2002). M-TRAN: self-reconfigurable modular robotic system. IEEE/ASME Transactions on Mechatronics, 7(4), 431–441.

    Article  Google Scholar 

  • O’Grady, R., Groß, R., Mondada, F., Bonani, M., & Dorigo, M. (2005). Self-assembly on demand in a group of physical autonomous mobile robots navigating rough terrain. In Lecture notes in artificial intelligence : Vol. 3630. 8th European conference on artificial life, ECAL 2005 (pp. 272–281). Berlin: Springer.

    Google Scholar 

  • O’Grady, R., Christensen, A. L., & Dorigo, M. (2009a). SWARMORPH: multi-robot morphogenesis using directional self-assembly. IEEE Transactions on Robotics, 25, 738–743.

    Google Scholar 

  • O’Grady, R., Groß, R., Christensen, A. L., & Dorigo, M. (2009b). Distributed control to implement self-assembly strategies for the hill crossing task (Technical Report TR/IRIDIA/2009-022). IRIDIA, Faculté des Sciences Appliquées, Université Libre de Bruxelles.

  • O’Grady, R., Pinciroli, C., Groß, R., Christensen, A. L., & Dorigo, M. (2009c, in press). Swarm-bots to the rescue. In Proceedings of the 10th European conference on artificial life, ECAL 2009. Berlin: Springer.

  • O’Grady, R., Groß, R., Christensen, A. L., & Dorigo, M. (2010). Self assembly strategies in a group of autonomous mobile robots—support page. http://iridia.ulb.ac.be/supp/IridiaSupp2008-016/.

  • Østergaard, E. H., Kassow, K., Beck, R., & Lund, H. H. (2006). Design of the ATRON lattice-based self-reconfigurable robot. Autonomous Robots, 21(2), 165–183.

    Article  Google Scholar 

  • Penrose, L. S., & Penrose, R. (1957). A self-reproducing analogue. Nature, 179(4571), 1183.

    Article  Google Scholar 

  • Sendova-Franks, A. B., & Franks, N. R. (1999). Self-assembly, self-organization and division of labour. Philosophical Transactions Royal Society B, 354(1388), 1395–1405.

    Article  Google Scholar 

  • Shen, W.-M., Will, P., Galstyanm, A., & Chuong, C.-M. (2004). Hormone-inspired self-organization and distributed control of robotic swarms. Autonomous Robots, 17(1), 93–105.

    Article  Google Scholar 

  • Shen, W.-M., Krivokon, M., Chiu, H., Everist, J., Rubenstein, M., & Venkatesh, J. (2006). Multimode locomotion for reconfigurable robots. Autonomous Robots, 20(2), 165–177.

    Article  Google Scholar 

  • Trianni, V., Tuci, E., & Dorigo, M. (2004). Evolving functional self-assembling in a swarm of autonomous robots. In Proceedings of the 8th international conference on the simulation of adaptive behavior (pp. 405–414). Cambridge: MIT Press.

    Google Scholar 

  • Tuci, E., Groß, R., Trianni, V., Mondada, F., Bonani, M., & Dorigo, M. (2006). Cooperation through self-assembly in multi-robot systems. ACM Transactions on Autonomous and Adaptive Systems, 1(2), 115–150.

    Article  Google Scholar 

  • Whitesides, G. M., & Grzybowski, B. (2002). Self-assembly at all scales. Science, 295(5564), 2418–2421.

    Article  Google Scholar 

  • Yamakita, M., Taniguchi, Y., & Shukuya, Y. (2003). Analysis of formation control of cooperative transportation of mother ship by SMC. In Proceedings of the 2003 IEEE international conference on robotics and automation (Vol. 1, pp. 951–956). Los Alamitos: IEEE Computer Society Press.

    Google Scholar 

  • Yim, M. (1994). Locomotion with a unit-modular reconfigurable robot. PhD thesis, Department of Mechanical Engineering, Stanford University, Stanford, CA.

  • Yim, M., Duff, D. G., & Roufas, K. D. (2000). PolyBot: A modular reconfigurable robot. In Proceedings of the 2000 IEEE international conference on robotics and automation (Vol. 1, pp. 514–520). Los Alamitos: IEEE Computer Society Press.

    Google Scholar 

  • Yim, M., Duff, D., & Zhang, Y. (2001). Closed-chain motion with large mechanical advantage. In Proceedings of the 2001 IEEE/RSJ international conference on intelligent robots and systems (Vol. 1, pp. 318–323). Los Alamitos: IEEE Computer Society Press.

    Google Scholar 

  • Yim, M., Roufas, K., Duff, D., Zhang, Y., Eldershaw, C., & Homans, S. B. (2003). Modular reconfigurable robots in space applications. Autonomous Robots, 14(2–3), 225–237.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rehan O’Grady.

Electronic Supplementary Material

3SbotsCrossHill (WMV 5.33 MB)

2SbotsFailToCrossHill (WMV 2.81 MB)

2CoordinatedSbotsCrossHill (WMV 3.84 MB)

6SbotsCrossHill (WMV 4.33 MB)

6SbotsCrossHill2 Groups (WMV 3.86 MB)

3CoordinatedSbotsCrossHill (WMV 2.87 MB)

3SbotsCross2cmHole (WMV 1.07 MB)

3SbotsCross10cmHole (WMV 2.76 MB)

2SbotsRescue2 Sbots (WMV 3.81 MB)

2SbotsRescueSwarmbot (WMV 4.63 MB)

2ReconfiguringSbotsRescueSwarmbot (WMV 6.83 MB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

O’Grady, R., Groß, R., Christensen, A.L. et al. Self-assembly strategies in a group of autonomous mobile robots. Auton Robot 28, 439–455 (2010). https://doi.org/10.1007/s10514-010-9177-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10514-010-9177-0

Keywords

Navigation