Skip to main content
Log in

Incremental kinesthetic teaching of motion primitives using the motion refinement tube

  • Published:
Autonomous Robots Aims and scope Submit manuscript

Abstract

We present an approach for kinesthetic teaching of motion primitives for a humanoid robot. The proposed teaching method starts with observational learning and applies iterative kinesthetic motion refinement using a forgetting factor. Kinesthetic teaching is supported by introducing the motion refinement tube, which represents an area of allowed motion refinement around the nominal trajectory. On the realtime control level, the kinesthetic teaching is handled by a customized impedance controller, which combines tracking performance with compliant physical interaction and allows to implement soft boundaries for the motion refinement. A novel method for continuous generation of motions from a hidden Markov model (HMM) representation of motion primitives is proposed, which incorporates time information for each state. The proposed methods were implemented and tested using DLR’s humanoid upper-body robot Justin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albu-Schäffer, A., Ott, C., Frese, U., & Hirzinger, G. (2003). Cartesian impedance control of redundant robots: recent results with the dlr-light-weight-arms. In IEEE int. conf. on robotics and automation (pp. 3704–3709).

    Google Scholar 

  • Alissandrakis, A., Nehaniv, C. L., & Dautenhahn, K. (2007). Correspondence mapping induced state and action metrics for robotic imitation. IEEE Transactions on Systems, Man and Cybernetics. Part B. Cybernetics, 37(2), 299–307. Special issue on robot learning by observation, demonstration and imitation.

    Article  Google Scholar 

  • Asfour, T., Gyarfas, F., Azad, P., & Dillmann, R. (2006). Imitation learning of dual-arm manipulation tasks in humanoid robots. In IEEE-RAS int. conf. on humanoid robots (pp. 40–47).

    Chapter  Google Scholar 

  • Billard, A., Calinon, S., & Guenter, F. (2006). Discriminative and adaptive imitation in uni-manual and bi-manual tasks. Robotics and Autonomous Systems, 54, 370–384.

    Article  Google Scholar 

  • Billard, A., Calinon, S., Dillmann, R., & Schaal, S. (2008). Robot programming by demonstration. In B. Siciliano & O. Khatib (Eds.), Handbook of robotics. Berlin: Springer.

    Google Scholar 

  • Blimes, J. A. (1997). A gentle tutorial of the em algorithm and its application to parameter estimation for Gaussian mixture and hidden Markov models (Tech. Rep. ICSI-TR-97-021). University of Berkeley.

  • Calinon, S., & Billard, A. (2007a). Active teaching in robot programming by demonstration. In IEEE international conference on robot and human interactive communication (pp. 702–707).

    Google Scholar 

  • Calinon, S., & Billard, A. (2007b). Incremental learning of gestures by imitation in a humanoid robot. In ACM/IEEE international conference on human-robot interaction (pp. 255–262).

    Google Scholar 

  • Calinon, S., Guenter, F., & Billard, A. (2007). On learning, representing and generalizing a task in a humanoid robot. IEEE Transactions on Systems, Man and Cybernetics. Part B, 37(2), 286–298. Special issue on robot learning by observation, demonstration and imitation.

    Article  Google Scholar 

  • Calinon, S., D’halluin, F., Sauser, E., Caldwell, D., & Billard, A. G. (2010). Learning and reproduction of gestures by imitation: an approach based on hidden Markov model and Gaussian mixture regression. IEEE Robotics & Automation Magazine, 17(2), 44–54.

    Article  Google Scholar 

  • Cohn, D. A., Ghahramani, Z., & Jordan, M. I. (1996). Active learning with statistical models. The Journal of Artificial Intelligence Research, 4, 129–145.

    MATH  Google Scholar 

  • Dariush, B., Gienger, M., Jian, B., Goerick, C., & Fujimura, K. (2008). Whole body humanoid control from human motion descriptors. In IEEE int. conf. on robotics and automation (pp. 2677–2684).

    Chapter  Google Scholar 

  • De Luca, A., Albu-Schäffer, A., Haddadin, S., & Hirzinger, G. (2006). Collision detection and safe reaction with the dlr-iii lightweight manipulator arm. In IEEE/RSJ int. conference on intelligent robots and systems (pp. 1623–1630).

    Chapter  Google Scholar 

  • Dillmann, R. (2004). Teaching and learning of robot tasks via observation of human performance. Robotics and Autonomous Systems, 47, 109–116.

    Article  Google Scholar 

  • Dixon, K. R., Dolan, J. M., & Khosla, P. K. (2004). Predictive robot programming: theoretical and experimental analysis. The International Journal of Robotics Research, 23, 955–973.

    Article  Google Scholar 

  • Hogan, N. (1985). Impedance control: an approach to manipulation, part I—theory. ASME Journal of Dynamic Systems, Measurement and Control, 107, 1–7.

    Article  MATH  Google Scholar 

  • Ijspeert, A. J., Nakanishi, J., & Schaal, S. (2002). Movement imitation with nonlinear dynamical systems in humanoid robots. In IEEE int. conf. on robotics and automation (pp. 1398–1403).

    Google Scholar 

  • Inamura, T., Nakamura, Y., & Toshima, I. (2004). Embodied symbol emergence based on Mimesis theory. The International Journal of Robotics Research, 23(4), 363–377.

    Article  Google Scholar 

  • Inamura, T., Kojo, N., & Inaba, M. (2006). Situation recognition and behavior induction based on geometric symbol representation of multimodal sensorimotor patterns. In IEEE/RSJ int. conf. on intelligent robots and systems (pp. 5147–5152).

    Chapter  Google Scholar 

  • Ito, M., Noda, K., Hoshino, Y., & Tani, J. (2006). Dynamic and interactive generation of object handling behaviors by a small humanoid robot using a dynamic neural network model. Neural Networks, 19(3), 323–337.

    Article  MATH  Google Scholar 

  • Khalil, H. K. (2002). Nonlinear systems (3rd edn.). New York: Prentice Hall.

    MATH  Google Scholar 

  • Kulić, D., Takano, W., & Nakamura, Y. (2007a). Incremental on-line hierarchical clustering of whole body motion patterns. In IEEE international symposium on robot and human interactive communication.

    Google Scholar 

  • Kulić, D., Takano, W., & Nakamura, Y. (2007b). Representability of human motions by factorial hidden Markov models. In IEEE/RSJ int. conf. on intelligent robots and systems.

    Google Scholar 

  • Kulić, D., Takano, W., & Nakamura, Y. (2008). Combining automated on-line segmentation and incremental clustering for whole body motions. In IEEE int. conf. on robotics and automation (pp. 2591–2598).

    Google Scholar 

  • Kulić, D., Takano, W., & Nakamura, Y. (2009). On-line segmentation and clustering from continuous observation of whole body motions. IEEE Transactions on Robotics, 25(5), 1158–1166.

    Article  Google Scholar 

  • Lee, D., & Nakamura, Y. (2005). Mimesis from partial observations. In IEEE/RSJ int. conf. on intelligent robots and systems (pp. 1911–1916).

    Google Scholar 

  • Lee, D., & Nakamura, Y. (2010). Mimesis model from partial observations for a humanoid robot. The International Journal of Robotics Research, 29(1), 60–80.

    Article  Google Scholar 

  • Lee, D., & Ott, C. (2010). Incremental motion primitive learning by physical coaching using impedance control. In IEEE/RSJ int. conf. on intelligent robots and systems (pp. 4133–4140).

    Google Scholar 

  • Lee, D., Kulić, D., & Nakamura, Y. (2008). Missing motion data recovery using factorial hidden Markov models. In IEEE int. conf. on robotics and automation (pp. 1722–1728).

    Google Scholar 

  • Lee, D., Ott, C., & Nakamura, Y. (2010). Mimetic communication model with compliant physical contact in human-humanoid interaction. The International Journal of Robotics Research, 29(13), 1684–1704.

    Article  Google Scholar 

  • Nakaoka, S., Nakazawa, A., Kanahiro, F., Kaneko, K., Morisawa, M., & Ikeuchi, K. (2005). Task model of lower body motion for a biped humanoid robot to imitate human dances. In IEEE/RSJ int. conf. on intelligent robots and systems (pp. 2769–2774).

    Google Scholar 

  • Okada, M., Tatani, K., & Nakamura, Y. (2002). Polynomial design of the nonlinear dynamics for the brain-like information processing of whole body motion. In IEEE int. conf. on robotics and automation (pp. 1410–1415).

    Google Scholar 

  • Ott, C., Albu-Schäffer, A., & Hirzinger, G. (2002). Comparison of adaptive and nonadaptive tracking control laws for a flexible joint manipulator. In IEEE/RSJ int. conference on intelligent robots and systems (pp. 2018–2024).

    Google Scholar 

  • Ott, C., Eiberger, O., Friedl, W., Bäuml, B., Hillenbrand, U., Borst, C., Albu-Schäffer, A., Brunner, B., Hirschmüller, H., Kielhöfer, S., Konietschke, R., Suppa, M., Wimböck, T., Zacharias, F., & Hirzinger, G. (2006). A humanoid two-arm system for dexterous manipulation. In IEEE-RAS int. conf. on humanoid robots (pp. 276–283).

    Chapter  Google Scholar 

  • Ott, C., Lee, D., & Nakamura, Y. (2008a). Motion capture based human motion recognition and imitation by direct marker control. In IEEE-RAS international conference on humanoid robots.

    Google Scholar 

  • Ott, C., Lee, D., & Nakamura, Y. (2008b). Motion capture based human motion recognition and imitation by direct marker control. In IEEE-RAS int. conf. on humanoid robots (pp. 399–405).

    Google Scholar 

  • Paden, B., & Panja, R. (1988). Globally asymptotically stable ‘pd+’ controller for robot manipulators. International Journal of Control, 47(6), 1697–1712.

    Article  MATH  Google Scholar 

  • Peters, J., Vijayakumar, S., & Schaal, S. (2003). Reinforcement learning for humanoid robotics (pp. 1–20).

  • Platt, R., Abdallah, M., & Wampler, C. (2010). Multi-priority Cartesian impedance control. In Proceedings of robotics: science and systems.

    Google Scholar 

  • Rabiner, L. R. (1989). A tutorial on hidden Markov models and selected applications in speech recognition. Proceedings of the IEEE, 77(2), 257–286.

    Article  Google Scholar 

  • Saunders, J., Nehaniv, C., Dautenhahn, K., & Alissandrakis, A. (2007). Self-imitation and environmental scaffolding for robot teaching. International Journal of Advanced Robotics Systems, 4(1), 109–124.

    Google Scholar 

  • Schaal, S., & Atkeson, C. (1998). Constructive incremental learning from only local information. Neural Computation, 10(8), 2047–2087.

    Article  Google Scholar 

  • Schaal, S., Ijspeert, A., & Billard, A. (2003). Computational approaches to motor learning by imitation. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 358, 537–547.

    Article  Google Scholar 

  • Sentis, L., & Khatib, O. (2005). Synthesis of whole-body behaviors through hierarchical control of behavioral primitives. International Journal of Humanoid Robotics, 2(4), 505–518.

    Article  Google Scholar 

  • Siciliano, B., Sciavicco, L., Villani, L., & Oriolo, G. (2009). Robotics: modelling, planning and control. Berlin: Springer.

    Google Scholar 

  • Spong, M. (1987). Modeling and control of elastic joint robots. Transactions of the ASME, Journal of Dynamic Systems, Measurement, and Control, 109, 310–319.

    Article  MATH  Google Scholar 

  • Tani, J., & Ito, M. (2003). Self-organization of behavioral primitives as multiple attractor dynamics: a robot experiment. IEEE Trans on Systems, Man, and Cybernetics Part A: Systems and Humans, 33(4), 481–488.

    Article  Google Scholar 

  • Vijayakumar, S., D’souza, A., & Schaal, S. (2005). Incremental online learning in high dimensions. Neural Computation, 17(12), 2602–2634.

    Article  MathSciNet  Google Scholar 

  • Yamane, K., & Hodgins, J. (2009). Simultaneous tracking and balancing of humanoid robots for imitating human motion capture data. In IEEE/RSJ int. conf. on intelligent robots and systems (pp. 2510–2517).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongheui Lee.

Additional information

An earlier version of this work was presented at the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, 2010 (Lee and Ott 2010).

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

(WMV 18.00 MB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, D., Ott, C. Incremental kinesthetic teaching of motion primitives using the motion refinement tube. Auton Robot 31, 115–131 (2011). https://doi.org/10.1007/s10514-011-9234-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10514-011-9234-3

Keywords

Navigation