Skip to main content

Advertisement

Log in

Reflexive stability control framework for humanoid robots

  • Published:
Autonomous Robots Aims and scope Submit manuscript

Abstract

In this paper we propose a general control framework for ensuring stability of humanoid robots, determined through a normalized zero-moment-point (ZMP). The proposed method is based on the modified prioritized kinematic control, which allows smooth and continuous transition between priorities. This, as long as the selected criterion is met, allows arbitrary joint movement of a robot without any regard of the consequential movement of the ZMP. On the other hand, it constrains the movement when the criterion approaches a critical condition. The critical condition thus triggers a reflexive, subconscious behavior, which has a higher priority than the desired, conscious movement. The transition between the two is smooth and reversible. Furthermore, the switching is encapsulated in a single modified prioritized task control equation. We demonstrate the properties of the algorithm on two human-inspired robots developed in our laboratory; a human-inspired leg-robot used for imitating human movement and a skiing robot.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  • Antonelli, G. (2009). Stability analysis for prioritized closed-loop inverse kinematic algorithms for redundant robotic systems. IEEE Transactions on Robotics, 25(5), 985–994.

    Article  Google Scholar 

  • Asfour, T., & Dillmann, R. (2003). Human-like motion of a humanoid robot arm based on a closed-form solution of the inverse kinematics problem. In Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003), (Vol. 2, pp. 1407–1412).

  • Atkeson, C., Hale, J., Pollick, F., Riley, M., Kotosaka, S., Schaul, S., et al. (2000). Using humanoid robots to study human behavior. IEEE on Intelligent Systems and their Applications, 15(4), 46–56.

    Article  Google Scholar 

  • Babic, J., & Lenarcic, J. (2006). Optimization of biarticular gastrocnemius muscle in humanoid jumping robot simulation. International Journal of Humanoid Robotics, 3(2), 219–234.

    Article  MATH  Google Scholar 

  • Babič, J., Bokman, L., Omrčen, D., Lenarčič, J., & Park, F. (2009). A biarticulated robotic leg for jumping movements: theory and experiments. Journal of Mechanisms and Robotics, 1, 1–9.

    Google Scholar 

  • Babič, J., Hale, J. G., & Oztop, E. (2011). Human sensorimotor learning for humanoid robot skill synthesis. Adaptive Behavior, 19(4), 250–263.

    Google Scholar 

  • Babič, J., & Škorja, G. (2012). Analysis of musculoskeletal system responses to perturbations during standing posture. Elektrotehniki vestnik, 79(1/2), 7–12.

    Google Scholar 

  • Baerlocher, P., & Boulic, R. (1998). Task-priority formulations for the kinematic control of highly redundant articulated structures. In Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (Vol. 1, pp. 323–329).

  • Chen, T.-H., Cheng, F.-T., Sun, Y.-Y., & Hung, M.-H. (1994). Torque optimization schemes for kinematically redundant manipulators. Journal of Robotic Systems, 11(4), 257–269.

    Article  MATH  Google Scholar 

  • Cherubini, A., & Chaumette, F. (2010). A redundancy-based approach for obstacle avoidance in mobile robot navigation. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), (pp. 5700–5705).

  • Federolf, P.A. (2005). Finite element simulation of a carving alpine ski. PhD thesis, Swiss Federal Institute of Technology Zurich.

  • Gams, A., Ijspeert, A. J., Schaal, S., & Lenarčič, J. (2009). On-line learning and modulation of periodic movements with nonlinear dynamical systems. Autonomous Robots, 27(1), 3–23.

    Article  Google Scholar 

  • Gams, A., Petrič, T., Babič, J., Žlajpah, L., & Ude, A. (2011). Constraining movement imitation with reflexive behavior: Robot squatting. In 11th IEEE-RAS International Conference on Humanoid Robots (Humanoids), (pp. 294–299).

  • Grillner, S. (1975). Locomotion in vertebrates: central mechanisms and reflex interaction. Physiological Reviews, 55(2), 247–304.

    Article  Google Scholar 

  • Harada, K., Kajita, S., Kaneko, K., & Hirukawa, H. (2003). Zmp analysis for arm/leg coordination. In Proceedings of 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003), (Vol. 1, pp. 75–81).

  • Hirai, K., Hirose, M., Haikawa, Y., & Takenaka, T. (1998). The development of honda humanoid robot. In Proceedings of 1998 IEEE International Conference on Robotics and Automation, (Vol. 2, pp. 1321–1326).

  • Huang, Q., Yokoi, K., Kajita, S., Kaneko, K., Arai, H., Koyachi, N., et al. (2001). Planning walking patterns for a biped robot. Robotics and Automation, IEEE Transactions, 17(3), 280–289.

    Google Scholar 

  • Hutter, M., Hoepflinger, M. A., Gehring, C., Bloesch, M., Remy, C. D., & Siegwart, R. (2012). Hybrid operational space control for compliant legged systems. RSS: In Robotics Science and Systems VIII.

  • Hyon, S.-H., Hale, J., & Cheng, G. (2007). Full-body compliant human-humanoid interaction: Balancing in the presence of unknown external forces. Robotics, IEEE Transactions, 23(5), 884–898.

    Article  Google Scholar 

  • Ijspeert, A. J. (2008). Central pattern generators for locomotion control in animals and robots: A review. Neural Networks, 21(4), 642–653.

    Article  Google Scholar 

  • Ijspeert, A. J., Nakanishi, J., & Schaal, S. (2002). Movement imitation with nonlinear dynamical systems in humanoid robots. In Proceedings of IEEE International Conference on Robotics and Automation, (pp. 1398–1403). Washington, DC.

  • Khatib, O. (1987). A unified approach for motion and force control of robot manipulators: The operational space formulation. IEEE Journal of Robotics and Automation, 3(1), 43–53.

    Article  Google Scholar 

  • Komoguchi, Y., Yano, K., Peer, A., & Buss, M. (2008). Redundancy resolution of a 7 dof haptic interface considering collision and singularity avoidance. In IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2008, pp. 3513–3518.

  • Lahajnar, L. (2009). Avtonomno smucanje humanoidnega robota. PhD thesis, Faculty of Electrical Engineering, University of Ljubljana.

  • Lahajnar, L., Kos, A., & Nemec, B. (2009). Skiing robot-design, control, and navigation in unstructured environment. Robotica, 27, 567–577.

    Article  Google Scholar 

  • Liegeois, A. (1977). Automatic supervisory control of the configuration and behavior of multibody mechanisms. IEEE Transactions on Systems Man and Cybernetics, 7(12), 868–871.

    Article  MATH  Google Scholar 

  • Maciejewski, A. A., & Klein, C. A. (1985). Obstacle avoidance for kinematically redundant manipulators in dynamically varying environments. The International Journal of Robotics Research, 4(3), 109–117.

    Article  Google Scholar 

  • Mansard, N., Khatib, O., & Kheddar, A. (2009). A unified approach to integrate unilateral constraints in the stack of tasks. IEEE Transactions on Robotics, 25(3), 670–685.

    Article  Google Scholar 

  • Murphy, R. R. (2000). Introduction to AI robotics (1st ed.), MIT Press, Cambridge.

  • Nakamura, Y. (1990). Advanced Robotics: Redundancy and Optimization (1st ed.), Addison-Wesley Longman Publishing Co., Inc., Boston.

  • Nemec, B., & Lahajnar, L. (2009). Control and navigation of the skiing robot. In Proceedings of the 2009 IEEE/RSJ international conference on Intelligent Robots and Systems IROS’09, (pp. 2321–2326). IEEE Press: Piscataway.

  • Nemec, B., Žlajpah, L., & Omrčen, D. (2007). Comparison of null-space and minimal null-space control algorithms. Robotica, 25(05), 511–520.

    Article  Google Scholar 

  • Oberegger, U. F., Kaps, P., Mssner, M., Heinrich, D., & Nachbauer, W. (2010). Simulation of turns with a 3d skier model. Procedia Engineering, 2(2):3171–3177. The Engineering of Sport 8 - Engineering Emotion.

    Google Scholar 

  • Omrčen, D., & Ude, A. (2010). Redundancy control of a humanoid head for foveation and three-dimensional object tracking: A virtual mechanism approach. Advanced Robotics, 24(15), 2171–2197.

    Article  Google Scholar 

  • Peternel, L., Petrič, T., & Nemec, B. (2011). Skiing robot navigation learning. In Zbornik 14. Mednarodne multikonference Informacijska druba-IS 2011, (vol. A). Institut Jozef Stefan.

  • Petrič, T., Curk, B., Cafuta, P., & Žlajpah, L. (2010). Modeling of the robotic powerball: A nonholonomic, underactuated, and variable structure-type system. Mathematical and Computer Modelling of Dynamical Systems, 16(4), 327–346.

    Article  MATH  MathSciNet  Google Scholar 

  • Petrič, T., Gams, A., Ijspeert, A. J., & Žlajpah, L. (2011a). On-line frequency adaptation and movement imitation for rhythmic robotic tasks. The International Journal of Robotics Research, 30(14), 1775–1788

    Google Scholar 

  • Petrič, T., Nemec, B., Babič, J., & Žlajpah, L. (2011b). Multilayer control of skiing robot. In International Conference on Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ, (pp. 4832–4837).

  • Righetti, L., & Ijspeert, A. J. (2006). Programmable central pattern generators: an application to biped locomotion control. In Proceedings of the 2006 IEEE International Conference on Robotics and Automation.

  • Samson, C., Espiau, B., & Borgne, M. L. (1991). Robot control: The task function approach. Oxford: Oxford University Press.

  • Schaal, S., Mohajerian, P., & Ijspeert, A. (2007). Dynamics systems vs. optimal control: A unifying view. Progress in Brain Research, 165(6), 425–445.

    Article  Google Scholar 

  • Sciavicco, L., & Siciliano, B. (2005). Modelling and control of robot manipulators (advanced textbooks in control and signal processing). Advanced textbooks in control and signal processing (2nd ed.). Heidelberg: Springer.

  • Sentis, L., Park, J., & Khatib, O. (2010). Compliant control of multicontact and center-of-mass behaviors in humanoid robots. IEEE Transactions on Robotics, 26(3), 483–501.

    Article  Google Scholar 

  • Shin, D., Sardellitti, I., Park, Y.-L., Khatib, O., & Cutkosky, M. (2010). Design and control of a bio-inspired human-friendly robot. The International Journal of Robotics Research, 29(5), 571–584.

    Article  Google Scholar 

  • Siciliano, B., & Khatib, O. (Eds.). (2008). Springer Handbook of Robotics. Heidelberg: Springer.

  • Siciliano, B., & Slotine, J.-J. (1991). A general framework for managing multiple tasks in highly redundant robotic systems. In 5th International Conference on Advanced Robotics,’Robots in Unstructured Environments’, 91 ICAR, (Vol. 2, pp. 1211–1216).

  • Sugiura, H., Gienger, M., Janssen, H., & Goerick, C. (2007). Real-time collision avoidance with whole body motion control for humanoid robots. In IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2007, (pp. 2053–2058).

  • Suleiman, W., Kanehiro, F., Miura, K., & Yoshida, E. (2009). Improving zmp-based control model using system identification techniques. In 9th IEEE-RAS International Conference on Humanoid Robots, Humanoids 2009, (pp. 74–80).

  • Ude, A., Atkeson, C. G., & Riley, M. (2004). Programming full-body movements for humanoid robots by observation. Robotics and Autonomous Systems, 47(2–3), 93–108. Robot Learning from Demonstration.

    Google Scholar 

  • Ude, A., Gams, A., Asfour, T., & Morimoto, J. (2010). Task-specific generalization of discrete and periodic dynamic movement primitives. IEEE Transactions on Robotics, 26(5), 800–815.

    Article  Google Scholar 

  • Ukidve, C., McInroy, J., & Jafari, F. (2008). Using redundancy to optimize manipulability of stewart platforms. IEEE/ASME Transactions on Mechatronics, 13(4), 475–479.

    Article  Google Scholar 

  • Vukobratovic, M., & Borovac, B. (2004). Zero-moment point: Thirty five years of its life. International Journal of Humanoid Robotics, 1(1), 157–173.

    Article  Google Scholar 

  • Vukobratovic, M., & Juricic, D. (1969). Contribution to the synthesis of biped gait. IEEE Transactions on Biomedical Engineering, 16(1), 1–6.

    Article  Google Scholar 

  • Žlajpah, L. (2006). Robotic yo-yo: Modelling and control strategies. Robotica, 24(2), 211–220.

    Article  Google Scholar 

  • Žlajpah, L., & Nemec, B. (2002). Kinematic control algorithms for on-line obstacle avoidance for redundant manipulators. In IEEE/RSJ International Conference on Intelligent Robots and Systems, (Vol. 2, pp. 1898–1903).

  • Yoneyama, T., Kagawa, H., Unemoto, M., Iizuka, T., & Scott, N. (2009). A ski robot system for qualitative modelling of the carved turn. Sports Engineering, 11, 131–141. doi:10.1007/s12283-009-0018-3.

    Article  Google Scholar 

Download references

Acknowledgments

This paper was partially funded by the European Community’s Seventh Framework Programme FP7/2007-2013 (Specific Programme Cooperation, Theme 3, Information and Communication Technologies) under grant agreement no. 269959, IntellAct.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tadej Petrič.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1 (MPG 7434 kb)

ESM 1 (MPG 22962 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petrič, T., Gams, A., Babič, J. et al. Reflexive stability control framework for humanoid robots. Auton Robot 34, 347–361 (2013). https://doi.org/10.1007/s10514-013-9329-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10514-013-9329-0

Keywords

Navigation