Skip to main content
Log in

Unifying microscopic flocking motion models for virtual, robotic, and biological flock members

  • Published:
Autonomous Robots Aims and scope Submit manuscript

Abstract

Flocking motions have been the subject of hundreds of studies over the past six decades. The vast majority of models have nearly identical aims: bottom-up demonstration of basic emergent flocking motions. Despite a significant fraction of the literature providing algorithmic descriptions of models, incompleteness and imprecision are also readily identifiable in flocking algorithms, algorithmic input, and validation of the models. To address this issue, this meta-study introduces a data-flow template, which unifies many of the existing approaches. Additionally, there are small differences and ambiguities in the flocking scenarios being studied by different researchers; unfortunately, these differences are of considerable significance. For example, much subtlety is needed to specify sensory requirements exactly and minor modifications may critically alter a flock’s exhibited motions. We introduce two taxonomies that minimize both incompleteness and imprecision, and enable us to highlight those publications that study flocking motions under comparable assumptions. Furthermore, we aggregate and translate the publications into a consolidated notation. The common notation along with the data-flow template and the two taxonomies constitute a collection of tools, that together, facilitates complete and precise flocking motion models, and enables much of the work to be unified. To conclude, we make recommendations for more diverse research directions and propose criteria for rigorous problem definitions and descriptions of future flocking motion models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. Typically the sensor’s reference frame will be that of the flock member, but when the model uses global sensors (e.g., overhead camera) the two reference frames will differ.

  2. In this paper, flock member \(X\) calls member \(Y\) a neighbor if and only if \(Y\) can be sensed by \(X\).

  3. Phase shifts refer to the moments in time when a flock becomes or discontinues being a flock.

References

  • Albi, G., & Pareschi, L. (2012). Modeling self-organized systems interacting with few individuals: from microscopic to macroscopic dynamics. ArXiv e-prints.

  • Aoki, I. (1984). Internal dynamics of fish schools in relation to inter-fish distance. Bulletin of the Japanese Society of Scientific Fisheries, 48(3), 1081–1088.

    Google Scholar 

  • Arkin, R. C., & Balch, T. (1999). Behavior-based formation control for multi-robot teams. IEEE Transactions on Robotics and Automation, 14(6), 926–939.

    Google Scholar 

  • Babak, P., Magnsson, K. G., & Sigurdsson, S. (2004). Dynamics of group formation in collective motion of organisms. Mathematical Medicine and Biology, 21(4), 269–292.

    Article  MATH  Google Scholar 

  • Ballerini, M., Cabibbo, N., Candelier, R., Cavagna, A., Cisbani, E., Giardina, I., et al. (2008). Interaction ruling animal collective behavior depends on topological rather than metric distance: Evidence from a field study. Proceedings of the National Academy of Sciences, 105(4), 1232–1237.

    Google Scholar 

  • Barbosa, A. (1995). Foraging strategies and their influence on scanning and flocking behaviour of waders. Journal of Avian Biology, 26(3), 182–186.

    Article  MathSciNet  Google Scholar 

  • Bazazi, S., Buhl, J., Hale, J. J., Anstey, M. L., Sword, G. A., Simpson, S. J., et al. (2008). Collective motion and cannibalism in locust migratory bands. Current Biology, 18(10), 735–739.

    Google Scholar 

  • Bender, J. G., & Fenton, R. E. (1970). On the flow capacity of automated highways. Transportation Science, 4(1), 52–63.

    Article  Google Scholar 

  • Blomqvist, O., Bremberg, S., & Zauer, R. (2012). Mathematical modeling of flocking behavior. Doctoral dissertation, KTH.

  • Bode, N. W. F., Franks, D. W., & Wood, A. J. (2011). Limited interactions in flocks: Relating model simulations to empirical data. Journal of The Royal Society Interface, 8(55), 301–304.

    Article  Google Scholar 

  • Camperi, M., Cavagna, A., Giardina, I., Parisi, G., & Silvestri, E. (2012). Spatially balanced topological interaction grants optimal cohesion in flocking models. Interface Focus, 2(6), 715–725.

    Article  Google Scholar 

  • Cavagna, A., Cimarelli, A., Giardina, I., Parisi, G., Santagati, R., Stefanini, F., et al. (2010). From empirical data to inter-individual interactions: Unveiling the rules of collective animal behavior. Mathematical Models and Methods in Applied Sciences, 20, 1491–1510.

    Google Scholar 

  • Cavagna, A., Giardina, I., & Ginelli, F. (2012). Boundary information inflow enhances correlation in flocking. ArXiv e-prints.

  • Clark, P. J., & Evans, F. C. (1954). Distance to nearest neighbor as a measure of spatial relationships in populations. Ecology, 35(4), 445–453.

    Article  Google Scholar 

  • Codling, E. A., Pitchford, J. W., & Simpson, S. D. (2007). Group navigation and the “many-wrongs principle” in models of animal movement. Ecology, 88(7), 1864–1870.

    Article  Google Scholar 

  • Conradt, L., Krause, J., Couzin, I. D., & Roper, T. J. (2009). “Leading According to Need” in self-organizing groups. The American Naturalist, 173(3), 304–312.

    Article  Google Scholar 

  • Couzin, I. D., Krause, J., Franks, N. R., & Levin, S. A. (2005). Effective leadership and decision making in animal groups on the move. Nature, 433(3), 513–516.

    Article  Google Scholar 

  • Şamiloglu, A. T., Gazi, V., & Koku, A. B. (2006). Effects of asynchronism and neighborhood size on clustering in self-propelled particle systems. In Computer and Information Sciences ISCIS 2006, Lecture Notes in Computer Science (Vol. 4263, pp. 665–676). Berlin: Springer.

  • Czirók, A., Stanley, H. E., & Vicsek, T. (1997). Spontaneously ordered motion of self-propelled particles. Journal of Physics A: Mathematical and General, 30(5), 1375–1385.

    Article  Google Scholar 

  • Dingle, H., & Drake, A. V. (2007). What is migration? BioScience, 57(2), 113–121.

    Article  Google Scholar 

  • Dong, J. G. (2012). Flocking under hierarchical leadership with a free-will leader. International Journal of Robust and Nonlinear Control, n/a–n/a.

  • Edelstein-Keshet, L. (2001). Mathematical models of swarming and social aggregation. In International Symposium on Nonlinear Theory and its Applications, Miyagi, Japan.

  • Emlen, J. T, Jr. (1952). Flocking behavior in birds. The Auk, 69(2), 160–170.

    Article  Google Scholar 

  • Ferrante, E., Turgut, A. E., Huepe, C., Stranieri, A., Pinciroli, C., & Dorigo, M. (2012). Self-organized flocking with a mobile robot swarm: A novel motion control method. Adaptive Behavior, 20(6), 460–477.

    Article  Google Scholar 

  • Fine, B. T., & Shell, D. A. (2011). Flocking: don’t need no stink’n robot recoginition. In IEEE/RSJ International Conference on Robotics and Automation, San Francisco, CA, USA.

  • Fine, B. T., & Shell, D. A. (2012). Examining the information requirements for flocking motion. In 12th International Conference on Adaptive Behavior, Odense, Denmark.

  • Gazi, V., & Passino, K. M. (2003). Stability analysis of swarms. IEEE Transactions on Automatic Control, 48(4), 692–697.

    Article  MathSciNet  Google Scholar 

  • Gazi, V., & Passino, K. M. (2005). Stability of a one-dimensional discrete-time asynchronous swarm. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 35(4), 834–841.

    Article  Google Scholar 

  • Giardina, I. (2008). Collective behavior in animal groups: Theoretical models and empirical studies. HFSP Journal, 2(4), 205–219.

    Article  Google Scholar 

  • Ginelli, F., & Chaté, H. (2010). Relevance of metric-free interactions in flocking phenomena. Physical Review Letters, 105(168), 103.

    Google Scholar 

  • Gökçe, F. & Şahin, E. (2009). To flock or not to flock: the pros and cons of flocking in long-range “migration” of mobile robot swarms. In Proceedings of the 8th International Conference on Autonomous Agents and Multiagent Systems (AAMAS ’09), Budapest, Hungary (pp 65–72).

  • Goldstone, R. L., & Janssen, M. A. (2005). Computational models of collective behavior. Trends in Cognitive Sciences, 9(9), 424– 430.

    Article  Google Scholar 

  • Grégoire, G., Chaté, H., & Tuj, Y. (2003). Moving and staying together without a leader. Physica D: Nonlinear Phenomena, 181(30–4), 157–170.

    Article  MathSciNet  MATH  Google Scholar 

  • Gueron, S., Levin, S. A., & Rubenstein, D. I. (1996). The dynamics of herds: From individuals to aggregations. Journal of Theoretical Biology, 182(1), 85–98.

    Article  Google Scholar 

  • Hamilton, W. D. (1971). Geometry for the selfish herd. Journal of Theoretical Biology, 31(2), 295–311.

    Article  Google Scholar 

  • Hauert, S., Leven, S., Varga, M., Ruini, F., Cangelosi, A., Zufferey, J. C., & Floreano, D. (2011). Reynolds flocking in reality with fixed-wing robots: communication range vs. maximum turning rate. In IEEE/RSJ International Conference on Robotics and Automation, San Francisco, CA, USA.

  • Helbing, D., & Molnár, P. (1995). Social force model for pedestrian dynamics. Physical Review E, 51, 4282–4286.

    Article  Google Scholar 

  • Helbing, D., Farkas, I., & Vicsek, T. (2000). Simulating dynamical features of escape panic. Nature, 407, 487–490.

    Article  Google Scholar 

  • Helbing, D., Buzna, L., Johansson, A., & Werner, T. (2005). Self-organized pedestrian crowd dynamics: Experiments, simulations, and design solutions. Transportation Science, 39(1), 1–24.

    Article  Google Scholar 

  • Hildenbrandt, H., Carere, C., & Hemelrijk, C. (2010). Self-organized aerial displays of thousands of starlings: A model. Behavioral Ecology, 21(6), 1349–1359.

    Article  Google Scholar 

  • Huth, A., & Wissel, C. (1992). The simulation of the movement of fish schools. Journal of Theoretical Biology, 156(3), 365–385.

    Article  Google Scholar 

  • Hutto, R. L. (1988). Foraging behavior patterns suggest a possible cost associated with participation in mixed-species bird flocks. Oikos, 51(1), 79–83.

    Article  Google Scholar 

  • Ip, G. W., Chiu, Cy, & Wan, C. (2006). Birds of a feather and birds flocking together: hysical versus behavioral cues may lead to trait- versus goal-based group perception. Journal of personality and social psychology, 90(3), 368–381.

    Article  Google Scholar 

  • Jadbabaie, A., Lin, J., & Morse, A. S. (2002). Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE Transactions on Automatic Control, 48(6), 988–1001.

    Article  MathSciNet  Google Scholar 

  • James, R., Bennett, P. G., & Krause, J. (2004). Geometry for mutualistic and selfish herds: The limited domain of danger. Journal of Theoretical Biology, 228(1), 107–113.

    Article  Google Scholar 

  • Kelly, I. D., & Keating, D. A. (1996). On flocking by the fusion of sonar and active infrared sensors. In Proceedings of the Conference on Mechatronics and Machine Vision in Practice. Guimarães, Portugal (Vol. 1, pp. 14–17).

  • Kline, C. (1996). C++ boids. Retrieved March 2012 from http://www.behaviorworks.com/people/ckline/cornellwww/boid/boids.html.

  • Levine, H., Rappel, W. J., & Cohen, I. (2000). Self-organization in systems of self-propelled particles. Physical Review E, 63(1), 017101–017104.

    Article  Google Scholar 

  • Lindhé, M., Ögren, P., & Johansson, K., H. (2005). Flocking with Obstacle Avoidance: A New Distributed Coordination Algorithm Based on Voronoi Partitions. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA’05), Barcelona, Spain (pp 1785–1790).

  • Lopez, U., Gautrais, J., Couzin, I. D., & Theraulaz, G. (2012). From behavioural analyses to models of collective motion in fish schools. Interface Focus, 2(6), 693–707.

    Article  Google Scholar 

  • Lukeman, R., Li, Y. X., & Edelstein-Keshet, L. (2010). Inferring individual rules from collective behavior. Proceedings of the National Academy of Sciences USA, 107(28), 12576–12580.

    Article  Google Scholar 

  • Matarić, M. J. (1993). Designing Emergent Behaviors: From Local Interactions to Collective Intelligence. In Proceedings of the Second International Conference on Simulation of Adaptive Behavior (SAB ’93), Honolulu, Hawai, USA (pp. 432–441).

  • Mikhailov, A. S., & Zanette, D. H. (1999). Noise-induced breakdown of coherent collective motion in swarms. Physical Review E, 60(4), 4571–4575.

    Article  Google Scholar 

  • Miki, T., & Nakamura, T. (2006). An effective simple shepherding algorithm suitable for implementation to a multi-mmobile robot system. In First International Conference on Innovative Computing, Information and Control, 2006. ICICIC ’06 (Vol. 3, pp. 161–165).

  • Mogilner, A., & Edelstein-Keshet, L. (1999). A non-local model for a swarm. Journal of Mathematical Biology, 38, 534–570.

    Article  MathSciNet  MATH  Google Scholar 

  • Moussaïd, M., Helbing, D., Simon Garnier, M. C., Johansson, A., & Theraulaz, G. (2009). Experimental study of the Behavioural mechanisms underlying self-organization in human crowds. Proceedings of the Royal Society B, 276, 2755–2762.

    Article  Google Scholar 

  • Niizato, T., & Gunji, Y. P. (2011). Metrictopological interaction model of collective behavior. Ecological Modelling, 222(17), 3041–3049.

    Article  Google Scholar 

  • Okubo, A. (1986). Dynamical aspects of animal grouping: Swarms, schools, flocks, and herds. Advances in Biophysics, 22, 1–94.

    Article  Google Scholar 

  • Olfati-Saber, R. (2006). Flocking for multi-agent dynamic systems: Algorithms and theory. IEEE Transactions on Automatic Control, 51(3), 401–420.

    Article  MathSciNet  Google Scholar 

  • Parrish, J. K. (1989). Re-examining the selfish herd: Are central fish safer? Animal Behaviour, 38(6), 1048–1053.

    Article  Google Scholar 

  • Parrish, J. K., & Edelstein-Keshet, L. (1999). Complexity, pattern, and evolutionary trade-offs in animal aggregation. Science, 284(5411), 99–101.

    Article  Google Scholar 

  • Parrish, J. K., Viscido, S. V., & Grunbaum, D. (2002). Self-organized fish schools: An examination of emergent properties. Biological Bulletin, 202(3), 296–305.

    Article  Google Scholar 

  • Partridge, B. L. (1982). The structure and function of fish schools. Scientific American, 246(6), 114–123.

    Article  Google Scholar 

  • Pitcher, T. J., Partridge, B. L., & Wardle, C. S. (1976). A blind fish can school. Science, 194(4268), 963–965.

    Article  Google Scholar 

  • Rands, S. A., Pettifor, R. A., Rowcliffe, J. M., & Cowlishaw, G. (2004). State-dependent foraging rules for social animals in selfish herds. Proceedings of the Royal Society of London Series B: Biological Sciences, 271(1557), 2613–2620.

    Article  Google Scholar 

  • Rauch, E. M., Millonas, M. M., & Chialvo, D. R. (1995). Pattern formation and functionality in swarm models. Physics Letters A, 207(3–4), 185–193.

    Article  MathSciNet  MATH  Google Scholar 

  • Reynolds, C. W. (1987). Flocks, herds and schools: A distributed behavioral model. Computer Graphics, 21(4), 25–34.

    Article  Google Scholar 

  • Reynolds, C. W. (2004). Opensteer: Steering behaviors for autonomous characters. http://opensteer.sourceforge.net/, Last viewed in March 2012.

  • Shimoyama, N., Sugawara, K., Mizuguchi, T., Hayakawa, Y., & Sano, M. (1996). Collective motion in a system of motile elements. Physical Review Letters, 76(20), 3870–3873.

    Article  Google Scholar 

  • Simons, A. M. (2004). Many wrongs: The advantage of group navigation. Trends in Ecology & Evolution, 19(9), 453–455.

    Article  Google Scholar 

  • Smith, J., & Martin, A. (2009). Comparison of hard-core and soft-core potentials for modelling flocking in free space. ArXiv e-prints.

  • Sugawara, K. (2012). Personal communications.

  • Szabó, P., Nagy, M., & Vicsek, T. (2008). Turning with the others: novel transitions in an SPP model with coupling of accelerations. In Proceedings of the IEEE International Conference on Self-Adaptive and Self-Organizing Systems (SASO ’08), Venice, Italy (pp 463–464).

  • Szabó, P., Nagy, M., & Vicsek, T. (2009). Transitions in a self-propelled-particles model with coupling of accelerations. Physical Review E, 79(2), 021908–021913.

    Article  Google Scholar 

  • Tanner, H. G., Jadbabaie, A., & Pappas, G. J. (2003a). Stable flocking of mobile agents, part I: Fixed topology. In Proceedings of the IEEE Conference on Decision and Control (pp. 2010–2015).

  • Tanner, H. G., Jadbabaie, A., & Pappas, G. J. (2003b). Stable flocking of mobile agents, part II: Dynamic topology. In Proceedings of the IEEE Conference on Decision and Control (pp. 2016–2021).

  • Toner, J., & Tu, Y. (1998). Flocks, herds, and schools: A quantitative theory of flocking. Physical Review E, 58(4), 4828–4858.

    Article  MathSciNet  Google Scholar 

  • Turgut, A., Çelikkanat, H., Gökçe, F., & Şahin, E. (2008). Self-organized flocking in mobile robot swarms. Swarm Intelligence, 2(2–4), 97–120.

    Article  Google Scholar 

  • Vaughan, R., Sumpter, N., Henderson, J., Frost, A., & Cameron, S. (2000). Experiments in automatic flock control. Robotics and Autonomous Systems, 31, 109–117.

    Article  Google Scholar 

  • Vicsek, T., & Zafeiris, A. (2012). Collective motion. Physics Reports, 517(3–4), 71–140.

    Article  Google Scholar 

  • Vicsek, T., Czirók, A., Ben-Jacob, E., Cohen, I., & Shochet, O. (1995). Novel type of phase transition in a system of self-driven particles. Physical Review Letters, 75(6), 1226–1229.

    Article  Google Scholar 

  • Vine, I. (1971). Risk of visual detection and pursuit by a predator and the selective advantage of flocking behaviour. Journal of Theoretical Biology, 30(2), 405–422.

    Article  Google Scholar 

  • Viscido, S. V., & Wethey, D. S. (2002). Quantitative analysis of fiddler crab flock movement: Evidence for ‘selfish herd’ behaviour. Animal Behaviour, 63(4), 735–741.

    Article  Google Scholar 

  • Viscido, S. V., Miller, M., & Wethey, D. S. (2002). The dilemma of the selfish herd: The search for a realistic movement rule. Journal of Theoretical Biology, 217(2), 183–194.

    Article  MathSciNet  Google Scholar 

  • Warburton, K., & Lazarus, J. (1991). Tendency-distance models of social cohesion in animal groups. Journal of Theoretical Biology, 150(4), 473–488.

    Article  Google Scholar 

  • Whitfield, D. P. (2003). Redshank Tringa totanus flocking behaviour, distance from cover and vulnerability to sparrowhawk Accipiter nisus predation. Journal of Avian Biology, 34(7), 163– 169.

    Article  Google Scholar 

  • Wood, A. J., & Ackland, G. J. (2007). Evolving the selfish herd: Emergence of distinct aggregating strategies in an individual-based model. Proceedings of the Royal Society of London Series B: Biological Sciences, 274(1618), 1637–1642.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin T. Fine.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fine, B.T., Shell, D.A. Unifying microscopic flocking motion models for virtual, robotic, and biological flock members. Auton Robot 35, 195–219 (2013). https://doi.org/10.1007/s10514-013-9338-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10514-013-9338-z

Keywords

Navigation