Skip to main content
Log in

Design and control of a three-fingered tendon-driven robotic hand with active and passive tendons

  • Published:
Autonomous Robots Aims and scope Submit manuscript

Abstract

This paper presents a design of a three-fingered robotic hand driven by active and passive tendons and proposes control methods for this hand. The tendon-driven robotic hand consists of the thumb, the index and the middle fingers. The robotic thumb can move all the joints independently. In contrast, the index and the middle robotic fingers are under-actuated using the combination of active and passive tendons, and move the terminal two joints synchronously, which is one of the important features of the human digits. We present passivity-based impedance and force controllers for tendon-driven robotic fingers and discuss how to combine them for fast and secure grasps. We experimentally validate that the robotic hand moves fast and manipulates an object and demonstrate that the robotic hand grasps objects in diverse ways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abdallah, M. E., Platt R. Jr., Hargrave, B., & Permenter, F. (2011). Position control of tendon-driven fingers with position controlled actuators. In IEEE international conference on robotics and automation, Saint paul, MN (pp. 2859–2864).

  • Abdallah, M. E., Platt, R, Jr., & Wampler, C. W. (2013). Decoupled torque control of tendon-driven fingers with tension management. The International Journal of Robotics Research, 32(2), 247–258.

    Google Scholar 

  • Arimoto, S. (1996). Control theory of non-linear mechanical systems: A passivity-based and circuit-theoretic approach. Oxford: Oxford University Press.

    MATH  Google Scholar 

  • Bae, J. H., Arimoto, S., & Yoshida, M. (2005). Control and dexterity in robotic pinching under linking of movements of joints like human fingers. In Proceedings of the first international conference on complex medical engineering, Takamatsu, Japan (pp. 899–903).

  • Birglen, L., Laliberte, T., & Gosselin, C. (2008). Underactuated robotic hands, Springer tracts in advance robotics (Vol. 40). Berlin: Springer.

  • Bridgwater, L., Ihrke, C., Abdallah, M., Radford, N., Rogers, J., Yayathi, S., Askew, R., & Linn, D. (2012). The robonaut 2 hand. In IEEE international conference on robotics and automation, Saint Paul, MN (pp. 3425–3430).

  • Brown, C. Y. & Asada, H. H. (2007). Inter-finger coordination and postural synergies in robot hands via mechanical implementation of principal components analysis. In Proceedings of IEEE/RSJ international conference on intelligent robots and systems, San Diego, CA (pp. 2877–2882).

  • Carrozza, M. C. (2004). The SPRING hand: Development of a self-adaptive prosthesis for restoring natural grasping. Autonomous Robots, 16, 125–141.

    Article  Google Scholar 

  • Carrozza, M. C., Cappiello, G., Micera, S., Edin, B. B., Beccai, L., & Cipriani, C. (2006). Design of a cybernetic hand for perception and action. Biological Cybernetics, 95, 629–644.

    Article  MATH  Google Scholar 

  • Catalano, M., Grioli, G., Serio, A., Farnioli, E., Pazza, C., & Bicchi, A. (2012). Adaptive synergies for a humanoid robot hand. In IEEE-RAS international conference on humanoid robots, Osaka, Japan (pp. 7–14).

  • Cutkosky, M. R. (1989). On grasp choise, grasp models, and the design of hands for manufacturing tasks. IEEE Transactions on Robotics and Automation, 5(3), 269–279.

    Article  MathSciNet  Google Scholar 

  • Darling, W. G., Cole, K. J., & Miller, G. F. (1994). Coordination of index finger movements. Journal of Biomechanics, 27(4), 479–491.

    Article  Google Scholar 

  • Dechev, N., Cleghorn, W., & Naumann, S. (2001). Multiple finger passive adaptive grasp prosthetic hand. Mechanism and Machine Theory, 36, 1157–1173.

    Google Scholar 

  • Fukaya, N., Toyama, S., Asfour, T., & Dillmann, R. (2000). Design of the tuat/karlsruhe humanoid hand. In Proceedings 2000 IEEE/RSJ international conference on intelligent robots and systems (pp. 1754–1759).

  • Grebenstein, M., Chalon, M., Hirzinger, G., & Siegwart, R. (2010). Antagonistically driven finger design for the anthropomorphic DLR hand arm system. In Proceedings of IEEE international conference on intelligent robots and systems, Taipei, Taiwan (pp. 609–616).

  • Hirose, S. & Umetani, Y. (1978). The development of soft gripper for the versatile robothand. Mechanism and Machine Theory, 13, 351–359.

    Google Scholar 

  • Jacobsen, S. C., Wood, J. E., Knutti, D. F., & Biggers, K. B. (1984). The UTAH/M.I.T. dextrous hand: Work in progress. The International Journal of Robotics Research, 3(4), 21–50.

    Article  Google Scholar 

  • Johansson, R. & Westling, G. (1984). Roles of glabrous skin receptors and sensorimotor memory in automatic control of precision grip when lifting rougher or more slippery objects. Experimental Brain Research, 56, 550–564.

    Google Scholar 

  • Kaneko, K., Harada, K., & Kanehiro, F. (2007). Development of multi-fingered hand for life-size humanoid robots. In Proceedings of IEEE international conference on robotics and automation, Roma, Italy (pp. 913–920).

  • Kawasaki, H., Komatsu, T., & Uchiyama, K. (2002). Dexterous anthropomorphic robot hand with distributed tactile sensor: Gifu hand II. IEEE/ASME Transactions on Mechatronics, 7(3), 296–303.

    Article  Google Scholar 

  • Kobayashi, H., Hyodo, K., & Ogane, D. (1998). On tendon-driven robotic mechanisms with redundant tendons. The International Journal of Robotics Research, 17(5), 561–571.

    Article  Google Scholar 

  • Liu, H., Butterfass, J., Knoch, S., Meusel, P., & Hirzinger, G. (1999). A new control strategy for DLR’s multisensory articulated hand. IEEE Control Systems Magazine, 15, 105–110.

    Google Scholar 

  • Liu, H., Meusel, P., Seitz, N., Willberg, B., Hirzinger, G., Jin, M. H., et al. (2007). The modular multisensory DLR-HIT-hand. Mechanism and Machine Theory, 42, 612–625.

    Article  MATH  Google Scholar 

  • Lotti, F., Tiezzi, P., Vassura, G., Biagiotti, L., Palli, G., & Melchiorri, C. (2005). Development of ub hand 3: Early results. In Proceedings of IEEE international conference on robotics and automation, Barcelona, Spain (pp. 4488–4493).

  • Ma, S., Hirose, S., & Yashinada, H. (1993). Design and experiments for a coupled tendon-driven manipulator. IEEE Control Systems Magazine, 13, 30–36.

    Google Scholar 

  • Mason, M. T. & Salisbury, J. K. (1985). Robot hands and the mechanics of manipulation. Cambridge: The MIT Press.

  • Mouri, T., Endo, T., & Kawasaki, H. (2011). Review of gifu hand and its application. Journal of Mechanics, 39, 210–228.

    Google Scholar 

  • Niikura, R., Kunugi, N., & Koganezawa, K. (2011). Developement of artificial finger using the double planetary gear system. In Proceedings of IEEE/ASME international conference on advanced intelligent mechatronics, Budapest, Hungary (pp. 481–486).

  • Ozawa, R., Arimoto, S., Nakamura, S., & Bae, J. H. (2005). Control of an object with parallel surfaces by a pair of finger robots without object sensing. IEEE Transactions on Robotics, 21(5), 965–976.

    Article  Google Scholar 

  • Ozawa, R., Hashirii, K., & Kobayashi, H. (2009). Design and control of underactuated tendon-driven mechanisms. In: Proceedings of IEEE international conference on robotics and automation, Kobe, Japan (pp. 1522–1527).

  • Ozawa, R. & Moriya, M. (2010). Effects of elasticity on an under-actuated tendon-driven robotic finger. In Proceedings of IEEE international conference on robotics and biomimmetics, Tianjin, China (pp. 891–896).

  • Santello, M., Flanders, M., & Soechting, J. F. (1998). Postural hand synergies for tool use. The Journal of Neuroscience, 18(23), 10105–10115.

    Google Scholar 

  • Suzuki, T., Koinuma, M., & Nakamura, Y. (1996). Chaos and nonlinear control of nonholonmic free-joint manipulator. In Proceedings of the IEEE international conference on robotics and automation (pp. 2668–2675).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryuta Ozawa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ozawa, R., Hashirii, K., Yoshimura, Y. et al. Design and control of a three-fingered tendon-driven robotic hand with active and passive tendons. Auton Robot 36, 67–78 (2014). https://doi.org/10.1007/s10514-013-9362-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10514-013-9362-z

Keywords

Navigation