Skip to main content
Log in

Trajectory tracking control of an underactuated capsubot

  • Published:
Autonomous Robots Aims and scope Submit manuscript

Abstract

Trajectory tracking control of underactuated systems is one of the challenging issues. This paper proposes a two-stage control strategy for the trajectory tracking of a class of underactuated mechanical systems. Two new acceleration profiles for the capsubot motion generation are proposed for the motion control of the capsubot. The optimum selection of the parameters of the acceleration profile is investigated. To track the trajectory of the capsubot, a selection algorithm is proposed. Simulation and experimentation are performed to demonstrate the feasibility of the control strategy and selection algorithm along with the newly proposed acceleration profiles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Aguiar, A. P., & Hespanha, J. P. (2007). Trajectory-tracking and path-following of underactuated autonomous vehicles with parametric modeling uncertainty. IEEE Transactions on Automatic Control, 52(8), 1362–1379.

    Article  MathSciNet  Google Scholar 

  • Ashrafiuon, H., Muske, K. R., McNinch, L. C., & Soltan, R. A. (2008). Sliding-mode tracking control of surface vessels. IEEE Transactions on Industrial Electronics, 55(11), 4004–4012.

    Article  Google Scholar 

  • Bi, F., Wei, Y., Zhang, J., & Cao, W. (2010). Position-tracking control of underactuated autonomous underwater vehicles in the presence of unknown ocean currents. IET Control Theory & Applications, 4(11), 2369–2380.

    Article  MathSciNet  Google Scholar 

  • Biomechanics Q (2013). Retrieved 12 December 2013, from http://www.quintic.com/.

  • Carpi, F., Kastelein, N., Talcott, M., & Pappone, C. (2011). Magnetically controllable gastrointestinal steering of video capsules. IEEE Transactions on Biomedical Engineering, 58(2), 231–234.

    Article  Google Scholar 

  • Carta, R., Sfakiotakis, M., Pateromichelakis, N., Thoné, J., Tsakiris, D., & Puers, R. (2011). A multi-coil inductive powering system for an endoscopic capsule with vibratory actuation. Sensors and Actuators A: Physical, 172(1), 253–258.

    Article  Google Scholar 

  • Chernous’ko, F. (2002). The optimum rectilinear motion of a two-mass system. Journal of Applied Mathematics and Mechanics, 66(1), 1–7.

    Article  MathSciNet  Google Scholar 

  • Do, K. D., Jiang, Z. P., & Pan, J. (2003). On global tracking control of a vtol aircraft without velocity measurements. IEEE Transactions on Automatic Control, 48(12), 2212–2217.

    Article  MathSciNet  Google Scholar 

  • Huang, J., Ding, F., Fukuda, T., & Matsuno, T. (2013). Modeling and velocity control for a novel narrow vehicle based on mobile wheeled inverted pendulum. IEEE Transactions on Control Systems Technology, 21(5), 1607–1617.

    Article  Google Scholar 

  • Lee, N., Kamamichi, N., Li, H., & Furuta, K. (2008). Control system design and experimental verification of capsubot. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (pp. 1927–1932). IEEE

  • Liu, Y., Yu, H., & Yang, T. (2008). Analysis and control of a capsubot. In: Proceedings of the 17th World Congress the International Federation of Automatic Control (pp. 756–761).

  • Lopez-Martnez, M., Acosta, J., & Cano, J. (2010). Non-linear sliding mode surfaces for a class of underactuated mechanical systems. IET Control Theory & Applications, 4(10), 2195–2204.

    Article  MathSciNet  Google Scholar 

  • Menciassi, A., Accoto, D., Gorini, S., & Dario, P. (2006). Development of a biomimetic miniature robotic crawler. Autonomous Robots, 21(2), 155–163.

    Article  Google Scholar 

  • MINIMOTOR SA S (2013) Retrieved 12 December, 2013 from http://www.faulhaber-group.com/.

  • Olympus (2014) Endocapsule system. Retrieved August, 2014, from http://www.olympus.co.uk/

  • Park, M. S., & Chwa, D. (2009). Swing-up and stabilization control of inverted-pendulum systems via coupled sliding-mode control method. IEEE Transactions on Industrial Electronics, 56(9), 3541–3555.

    Article  Google Scholar 

  • Pathak, K., Franch, J., & Agrawal, S. (2005). Velocity and position control of a wheeled inverted pendulum by partial feedback linearization. IEEE Transactions on Robotics, 21(3), 505–513.

    Article  Google Scholar 

  • Valdastri, P., Webster, R., Quaglia, C., Quirini, M., Menciassi, A., & Dario, P. (2009). A new mechanism for mesoscale legged locomotion in compliant tubular environments. IEEE Transactions on Robotics, 25(5), 1047–1057.

    Article  Google Scholar 

  • Xu, R., & Özgüner, Ü. (2008). Sliding mode control of a class of underactuated systems. Automatica, 44(1), 233–241.

    Article  MathSciNet  MATH  Google Scholar 

  • Yamagata, Y., & Higuchi, T. (1995). A micropositioning device for precision automatic assembly using impact force of piezoelectric elements. In: Proceedings of the 1995 IEEE International Conference on Robotics and Automation (vol. 1, pp. 666–671). IEEE

  • Yu, H., Liu, Y., & Yang, T. (2008). Closed-loop tracking control of a pendulum-driven cart-pole underactuated system. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 222(2), 109–125.

    Article  Google Scholar 

  • Yu, H., Huda, M., & Wane, S. (2011). A novel acceleration profile for the motion control of capsubots. In: Proceedings of the 2011 IEEE International Conference on Robotics and Automation (pp. 2437–2442). IEEE

  • Zhang, Y., Jiang, S., Zhang, X., Ruan, X., & Guo, D. (2011). A variable-diameter capsule robot based on multiple wedge effects. IEEE/ASME Transactions on Mechatronics, 16(2), 241–254.

    Article  Google Scholar 

Download references

Acknowledgments

This work has been supported by the EPSRC funded UK-Japan Network on Human Adaptive Mechatronics Project (EP/E025250/1), EU Erasmus Mundus Project-ELINK (EM ECW-ref.149674-EM-1-2008-1-UK-ERAMUNDUS) and EU FP7-PEOPLE-2012-IRSES Project RABOT (318902).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongnian Yu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (mp4 28960 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huda, M.N., Yu, H. Trajectory tracking control of an underactuated capsubot. Auton Robot 39, 183–198 (2015). https://doi.org/10.1007/s10514-015-9434-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10514-015-9434-3

Keywords

Navigation