Skip to main content
Log in

Aerial robotic contact-based inspection: planning and control

  • Published:
Autonomous Robots Aims and scope Submit manuscript

Abstract

The challenge of aerial robotic contact-based inspection is the driving motivation of this paper. The problem is approached on both levels of control and path-planning by introducing algorithms and control laws that ensure optimal inspection through contact and controlled aerial robotic physical interaction. Regarding the flight and physical interaction stabilization, a hybrid model predictive control framework is proposed, based on which a typical quadrotor becomes capable of stable and active interaction, accurate trajectory tracking on environmental surfaces as well as force control. Convex optimization techniques enabled the explicit computation of such a controller which accounts for the dynamics in free-flight as well as during physical interaction, ensures the global stability of the hybrid system and provides optimal responses while respecting the physical limitations of the vehicle. Further augmentation of this scheme, allowed the incorporation of a last-resort obstacle avoidance mechanism at the control level. Relying on such a control law, a contact-based inspection planner was developed which computes the optimal route within a given set of inspection points while avoiding any obstacles or other no-fly zones on the environmental surface. Extensive experimental studies that included complex “aerial-writing” tasks, interaction with non-planar and textured surfaces, execution of multiple inspection operations and obstacle avoidance maneuvers, indicate the efficiency of the proposed methods and the potential capabilities of aerial robotic inspection through contact.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Notes

  1. ALSTOM Group, http://www.alstom.com/.

  2. ALSTOM Inspection Robotics, http://www.inspection-robotics.com/.

References

  • AEROWORKS, Collaborative Aerial Robotic Workers. http://www.aeroworks2020.eu/.

  • AIRobots, Innovative Aerial Service Robots for Remote Inspection by Contact, http://airobots.ing.unibo.it/.

  • Alexis, K. (2013). ASLquad System Identification. ETH Zurich, http://www.asl.ethz.ch/people/alexisk/personal/ASLquadID, Tech. Rep., June 2013.

  • Alexis, K., Huerzeler, C., & Siegwart, R. (2013). Hybrid modeling and control of a coaxial unmanned rotorcraft interacting with its environment through contact. 2013 International conference on robotics and automation (ICRA) (pp. 5397–5404). Karlsruhe.

  • Alexis, K., Nikolakopoulos, G., & Tzes, A. (2010). Design and experimental verification of a constrained finite time optimal control scheme for the attitude control of a quadrotor helicopter subject to wind gusts. 2010 International conference on robotics and automation (pp. 1636–1641). Alaska: Anchorage.

  • ARCAS, Aerial Robotics Collaborative Assembly System. http://www.arcas-project.eu/

  • Ascending Technologies GmbH, http://www.asctec.de/.

  • Baotic, M. (2005). Optimal control of piecewise affine systems. Ph.D. dissertation, Swiss Federal Institute of Technology Zurich.

  • Beardmore, R. (2010). Indicative friction coefficients. http://www.roymech.co.uk/.

  • Bellens, S., De Schutter, J., & Bruyninckx, H. (2012). A hybrid pose/wrench control framework for quadrotor helicopters. IEEE International conference on robotics and automation (ICRA) (pp. 2269–2274).

  • Bemporad, A. (2002). An efficient technique for translating mixed logical dynamical systems into piecewise affine systems. In Proceedings of the 41st IEEE conference on decision and control, 2002 (vol. 2, pp. 1970–1975).

  • Bemporad, A. (2004). Efficient conversion of mixed logical dynamical systems into an equivalent piecewise affine form. IEEE transactions on automatic control (vol.4(5), pp. 832 – 838).

  • Bemporad, A. (2003). Modeling, control, and reachability analysis of discrete-time hybrid systems. Sienna: University of Sienna.

    Google Scholar 

  • Bircher, A., & Alexis, K., Structural inspection planner open–source toolbox, https://github.com/ethz-asl/StructuralInspectionPlanner.

  • Bircher, A., Alexis, K., Burri, M., Oettershagen, P., Omari, S., Mantel, T., & Siegwart, R. (2015). Structural inspection path planning via iterative viewpoint resampling with application to aerial robotics. IEEE international conference on robotics and automation (ICRA). Seattle, Washington, May 26–30, 2015.

  • Boyd, S., & Vandenberghe, L. (2004). Convex optimization. Cambridge: Cambridge University Press.

    Book  MATH  Google Scholar 

  • Burri, M., Nikolic, J., Hurzeler, C., Caprari, G., & Siegwart, R. (2012). Aerial service robots for visual inspection of thermal power plant boiler systems. In 2012 2nd International conference on applied robotics for the power industry.

  • Chang, P., & Liu, S. (2003). Recent research in nondestructive evaluation of civil infrastructures. Journal of Materials in Civil Engineering, 15(3), 298–304.

    Article  MathSciNet  Google Scholar 

  • Darivianakis, G., Alexis, K., Burri, M., & Siegwart, R. (2014). Hybrid predictive control for aerial robotic physical interaction towards inspection operations. In 2014 IEEE international conference on robotics and automation (ICRA) pp. 53–58.

  • Dryanovski, I., Valenti, R. G., & Xiao, J. (2013). An open-source navigation system for micro aerial vehicles. Autonomous Robots, 34(3), 177–188.

    Article  Google Scholar 

  • Fumagalli, M., Naldi, R., Macchelli, A., Forte, F., Keemink, A. Q. L., Stramigioli, S., et al. (2014). Developing an aerial manipulator prototype: Physical interaction with the environment. IEEE Robotics Automation Magazine, 21, 41–50.

    Article  Google Scholar 

  • Gioioso, G., Franchi, A., Salvietti, G., Scheggi, S., & Prattichizzo, D. (2014). The flying hand: A formation of UAVs for cooperative aerial tele-manipulation. Proceedings of IEEE international conference on robotics and automation (pp. 4335–4341). Hong Kong.

  • Goebel, R., Sanfelice, R. G., & Teel, A. R. (2012). Hybrid dynamical systems: Modeling, stability, and robustness. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Helsgaun, K. (2009). General k-opt submoves for the linkernighan tsp heuristic. Mathematical Programming Computation, vol. 1(2–3):119–163. [Online]. Available: doi:10.1007/s12532-009-0004-6.

  • Helsgaun, K. (2000). An effective implementation of the lin-kernighan traveling salesman heuristic. European Journal of Operational Research, 126(1), 106–130.

    Article  MathSciNet  MATH  Google Scholar 

  • Herceg, M., Kvasnica, M., Jones, C., & Morari, M. (2013). Multi-Parametric Toolbox 3.0. In Proceedings of the European control conference (pp. 502–510), Zürich, July 17–19.

  • Huber, F., Kondak, K., Krieger, K., Sommer, D., Schwarzbach, M., Laiacker, M., Kossyk, I., Parusel, S., Haddadin, S., & Albu-Schaffer, A. (2013). First analysis and experiments in aerial manipulation using fully actuated redundant robot arm. IEEE/RSJ International conference on intelligent robots and systems (IROS) (pp. 3452–3457), Japan.

  • Huerzeler, C. (2013). Modeling and design of unmanned rotorcraft systems for contact based inspection. Ph.D. dissertation, Swiss Federal Institute of Technology Zurich.

  • Huerzeler, C., Alexis, K., & Siegwart, R. (2013). Configurable real-time simulation suite for coaxial rotor uavs. 2013 International conference on robotics and automation (ICRA) (pp. 309–316). Karlsruhe.

  • Jiang, G., & Voyles, R. (2013). Hexrotor UAV platform enabling dextrous interaction with structures-flight test. 2013 IEEE international symposium on safety, security, and rescue robotics (SSRR) (pp. 1–6).

  • Johnson, D., & McGeoch, L. (1995). The traveling salesman problem: A case study in local optimization. Heuristics for the Traveling Salesman Problem.

  • Karaman, S., & Frazzoli, E. (2010). Incremental sampling-based algorithms for optimal motion planning. arXiv preprint  arXiv:1005.0416.

  • Kouramas, K., & Dua, V., Hybrid parametric model-based control (pp. 25–48). Wiley-VCH Verlag GmbH and Co. KGaA.

  • Kvasnica, M., Rauova, I., & Fikar, M. (2010). Automatic code generation for real-time implementation of model predictive control. In 2010 IEEE International symposium on computer-aided control system design (CACSD) (pp. 993–998).

  • Kvasnica, M. (2009). Real-time model predictive control via multi-parametric programming: Theory and tools. Saarbruecken: VDM Verlag.

    Google Scholar 

  • Lin, S., & Kernighan, B. W. (1973). An effective heuristic algorithm for the traveling-salesman problem. Operations Research, 21(2), 498–516.

    Article  MathSciNet  MATH  Google Scholar 

  • Ljung, L. (1999). System identification: Theory for the user (2nd ed.). Upper Saddle River, NJ: Prentice Hall Inc.

    Google Scholar 

  • LKH-TSP Solver, http://www.akira.ruc.dk/~keld/research/LKH/

  • Loefberg, J. (2004). Yalmip : A toolbox for modeling and optimization in MATLAB. In Proceedings of the CACSD Conference, Taipei. [Online]. Available: http://users.isy.liu.se/johanl/yalmip.

  • Manubens, M., Devaurs, D., Ros, L., & Corté, J. (2013). Motion planning for 6-D manipulation with aerial towed-cable systems. Robotics: Science and systems 2013 (RSS).

  • Marconi, L., & Naldi, R. (2012). Control of aerial robots: Hybrid force and position feedback for a ducted fan. IEEE Control Systems, 32, 43–65.

    Article  MathSciNet  Google Scholar 

  • Marconi, L., Naldi, R., & Gentili, L. (2011). Modelling and control of a flying robot interacting with the environment. Automatica, 47(12), 2571–2583.

    Article  MathSciNet  MATH  Google Scholar 

  • Mellinger, D., Lindsey, Q., Shomin, M., & Kumar, V. (2011). Design, modeling, estimation and control for aerial grasping and manipulation. IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 2668–2673).

  • Mellinger, D., Shomin, M., Michael, N., & Kumar, V. (2013). Cooperative grasping and transport using multiple quadrotors. In Distributed autonomous robotic systems, ser. Springer tracts in advanced robotics (Vol. 83, pp. 545–558). Berlin: Springer.

  • Metni, N., & Hamel, T. (2007). A UAV for bridge inspection: Visual servoing control law with orientation limits. Automation in Construction, 17(1), 3–10.

    Article  Google Scholar 

  • Montserrat Manubens, L. R., Devaurs, D., & Cortes, J. (2013). Motion planning for 6-d manipulation with aerial towed-cable systems. In 2013 Robotics science and systems (RSS), Berlin.

  • Orsag, M., Korpela, C., Pekala, M., & Oh, P. (2013). Stability control in aerial manipulation. In American control conference (ACC) (pp. 5581–5586).

  • Orsag, M., Korpela, C., Stjepan, S., & Oh, P. (2014). Hybrid adaptive control for aerial manipulation. Journal of Intelligent and Robotic Systems, 73, 693–707.

    Article  Google Scholar 

  • Papachristos, C., & Tzes, A. (2013). Large object pushing via a direct longitudinally-actuated unmanned tri-tiltrotor. In Mediterranean conference on control automation (MED) (pp. 173–178).

  • Parra-Vega, V., Sanchez, A., Izaguire, C., Garcia, O., & Ruiz-Sanchez, F. (2013). Toward aerial grasping and manipulation with multiple UAVs. The Journal of Intelligent and Robotic Systems, 70, 575–593.

    Article  Google Scholar 

  • Popov, V. L. (2010). Contact mechanics and friction. Berlin: Springer.

    Book  MATH  Google Scholar 

  • Potočnik, B., Mušič, G., & Zupančič, B. (2004). A new technique for translating discrete hybrid automata into piecewise affine systems. Mathematical and Computer Modelling, 10(1), 41–57.

    MATH  Google Scholar 

  • Pounds, P. E. I., & Dollar, A. M. (2014). Stability of Helicopters in Compliant Contact Under PD-PID Control. IEEE Transactions on Robotics (Vol. 30).

  • Pounds, P. E. I., Bersak, D., & Dollar, A. (2011). The yale aerial manipulator: Grasping in flight. In 2011 IEEE international conference on robotics and automation (ICRA) (pp. 2974–2975).

  • Rens, K., Wipf, T., & Klaiber, F. (1997). Review of nondestructive evaluation techniques of civil infrastructure. Journal of Performance of Constructed Facilities, 11(4), 152–160.

    Article  Google Scholar 

  • Ruggiero, F., Cacace, J., Sadeghian, H., Lippiello, V. (2014). Impedance control of VToL UAVs with a momentum-based external generalized forces estimator. IEEE International conference on robotics and automation (ICRA) (pp. 2093–2099), May 31–June 7.

  • Shmoys, D., Lenstra, J., Kan, A., & Lawler, E. (1985). The traveling salesman problem. Chichester: Wiley.

    MATH  Google Scholar 

  • Sreenath, K., & Kumar, V. (2013). Dynamics, control and planning for cooperative manipulation of payloads suspended by cables from multiple quadrotor robots. In 2013 Robotics science and systems (RSS), Berlin.

  • Srikanth, M. B., Soto, A., Annaswamy, A., Lavretsky, E., & Slotine, J.-J. (2011). Controlled manipulation with multiple quadrotors. AIAA Conference on guidance, navigation and control.

  • Torrisi, F. D., Bemporad, A. (2002) HYSDEL—HYbrid System DEscription Language, The Hybrid Systems Group, IFA–ETHZ, http://control.ee.ethz.ch/~hybrid/hysdel/.

  • Valette, S., & Chassery, J.-M. (2004). Approximated centroidal voronoi diagrams for uniform polygonal mesh coarsening. Computer Graphics Forum, 23(3), 381–389.

    Article  Google Scholar 

  • Yuskel, B., Secchi, C., Bulthof, H., & Franchi, A. (2014). A nonlinear force observer for quadrotors and application to physical interactive tasks. IEEE/ASME international conference on advanced intelligent mechatronics (AIM) (pp. 433–440).

  • Yuskel, B., Secchi, C., Bulthoff, H. H., & Franchi, A. (2014). A nonlinear force observer for quadrotors and application to physical interactive tasks. IEEE/ASME international conference on advanced intelligent mechatronics (AIM) (pp. 433-440).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kostas Alexis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alexis, K., Darivianakis, G., Burri, M. et al. Aerial robotic contact-based inspection: planning and control. Auton Robot 40, 631–655 (2016). https://doi.org/10.1007/s10514-015-9485-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10514-015-9485-5

Keywords

Navigation