Skip to main content
Log in

Design of vertebrae-inspired trunk mechanism for controlling walking behavior of semi-passive walker

  • Published:
Autonomous Robots Aims and scope Submit manuscript

Abstract

A semi-passive walker that equips a small number of actuators attains locomotion through an interaction between its physical properties such as center of mass (CoM) and the ground in contact. Therefore, it is expected that the robot obtains a wide range of locomotion such as in its walking velocity by changing a trajectory of CoM. In this study, we focused on the trunk mechanism that largely influences the walking behavior by changing its CoM, and propose a vertebrae-inspired trunk mechanism in which tunable viscoelastic joints are embedded. By switching a mechanical property, that is, the viscoelasticity of the trunk joints, the cycle of the passive oscillation while walking is changed, and the robot obtains a wide range of the walking cycle. To verify this trunk mechanism, we developed a physical bipedal robot. The physical trunk mechanism does not require a supplemental actuator to oscillate the trunk actively, and does not require energy consumption to retain the viscoelasticity according to the devised mechanism. We also constructed simulation models equipping various types of trunk mechanisms for verifying the number and position of the trunk joints that influence the variation of the walking cycle. The simulation results suggest a criterion for the trunk mechanism design in which the walking cycle is influenced by the number and position of the joints. This paper concludes that the proposed trunk mechanism is a suitable and practical mechanical element that provides a wide range of the locomotion of semi-passive walker by utilizing its switchable mechanical property.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • Akachi, K., Kaneko, K., Kanehira, N., Ota, S., Miyamori, G., Hirata, M., Kajita, S., & Kanehiro, F. (2005). Development of humanoid robot HRP-3P. In Proceedings of 2005 IEEE/RSJ international conference on humanoid robots (pp. 50–55).

  • Anderson, S. O., Wisse, M., Atkeson, C. G., Hodgins, J. K., Zeglin, G. J., & Moyer, B. (2005). Powered bipeds based on passive dynamic principles. In Proceedings of 2004 IEEE/RSJ international conference on humanoid robots (CD–ROM) (pp. 110–116).

  • Asano, F., & Luo, Z. W. (2008a). Underactuated virtual passive dynamic walking with an upper body. In IEEE international conference on robotics and automation (ICRA) (pp. 2441–2446).

  • Asano, F., & Luo, Z. W. (2008b). Pseudo virtual passive dynamic walking and effect of upper body as counterweight. In IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 2934–2939).

  • Asano, F., Yamakita, M., & Furuta, K. (2000). Virtual passive dynamic walking and energy-based control laws. In Proceedings of the 2000 IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 1149–1154).

  • Benallegue, M., Laumond, J. P.,& Berthoz, A. (2013). Contribution of actuated head and trunk to passive walkers stabilization. In IEEE international conference on robotics and automation (ICRA) (pp. 5638–5648).

  • Bhounsule, P. A., Cortell, J., Greqal, A., Hendriksen, B., Karssen, J. G. D., Paul, C., et al. (2014). Low-bandwidth reflex-based control for lower power walking: 6k km on a single battery charge. The International Journal of Robotics Research, 33(10), 1305–1321.

    Article  Google Scholar 

  • Cioni, M., Pisasale, M., Abela, S., Belfiore, T., & Micale, M. (2010). Physiological electromyographic activation patterns of trunk muscles during walking. Open Rehabilitation Journal, 3, 136–142.

    Article  Google Scholar 

  • Collins, S., Ruina, A., Tedrake, R., & Wisse, M. (2005). Efficient bipedal robots based on passive-dynamic walkers. Science, 307, 1082–1085.

    Article  Google Scholar 

  • Collins, S. H., Wisse, M., & Ruina, A. (2001). A three-dimensional passive-dynamic walking robot with two legs and knees. The international Journal of Robotics Research, 20(7), 607–615.

    Article  Google Scholar 

  • Deng, K., Zhao, M., & Xu, W. (2012). Passive dynamic walking with torso. In 2012 IEEE international conference on mechatronics and automation (pp. 273–278).

  • Dertien, E. (2006). Dynamic walking with dribbel. IEEE Robotics and Automation Magazine, 13(3), 118–122.

    Article  Google Scholar 

  • Gomes, M. W., & Ruina, A. (2005). A walking model with no energy cost. Physical Review E, 83, 032901.

    Article  MathSciNet  Google Scholar 

  • Haruna, M., Ogino, M., Hosoda, K., & Asada, M. (2001). Yet another humanoid walking—passive dynamic walking with torso under simple control. In Proceedings of IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 259–264).

  • Hasegawa, S., & Fujii, N. (2003). Real-time rigid body simulation based on volumetric penalty method. In Haptic interfaces for virtual environment and teleoperator systems 2003 (HAPTICS 2003) (pp. 326–332).

  • Kavanagh, J. J., Morrison, S., & Barrett, R. S. (2005). Coordination of head and trunk accelerations during walking. Journal of Applied Physiology, 94, 468–475.

    Google Scholar 

  • Kraus, P. R.,& Kumar, V. (1997). Compliant contact models for rigid body collisions. In 1997 IEEE international conference on robotics and automation (pp. 1382–1387).

  • McGeer, T. (1990). Passive dynamic walking. International Journal of Robotics Research, 9(2), 62–82.

    Article  Google Scholar 

  • McGeer, T. (1993). Dynamics and control of bipedal locomotion. Journal of Theoretical Biology, 163(33), 277–314.

    Article  Google Scholar 

  • Mizuuchi, I., Tajima, R., Yoshikai, T., Sato, D., Nagashima, K., Inaba, M., Kuniyoshi, Y., & Inoue, H. (2002). The design and control of the flexible spine of a fully tendon-driven humanoid “kenta”. In Proceedings of the 2002 IEEE/RSJ international conference on intelligent robots and systems (IROS2002) (pp. 2527–2532).

  • Nishiwaki, K., Kuffner, J., Kagami, S., Inaba, M., & Inoue, H. (2007). The experimental humanoid robot H7: A research platform for autonomous behaviour. Philosophical Transactions of the Royal Society A, 365(1850), 79–107.

    Article  Google Scholar 

  • ODE Home Page. http://www.ode.org/.

  • Oku, H., Asagi, N., Takuma, T., & Masuda, T. (2015). Passive trunk mechanism for controlling walking behavior of semi-passive walker. In 2015 IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 944–949).

  • Park, I., Kim, J., Park, S., & Oh, J. (2004). Development of humanoid robot platform KHR-2. In IEEE-RAS/RSJ international conference on humanoid robots (humanoids), CD–ROM.

  • Park, J. H. (2001). Impedance control for biped robot locomotion. IEEE Transactions on Robotics and Automation, 17(6), 870–882.

    Article  Google Scholar 

  • Rummel, J., & Seyfarth, A. (2010). Passive stabilization of the trunk in walking. In Proceedings of international conference on simulation, modeling and programming for autonomous robots (pp. 127–136).

  • Stoquart, G., Detrembleur, C., & Lejeune, T. (2008). Effect of speed on kinematic, kinetic, electromyographic and energetic reference values during treadmill walking. Neurophysiologie Clinique/Clinical Neurophysiology, 38, 105–116.

    Article  Google Scholar 

  • Takuma, T., & Hosoda, K. (2006). Controlling the walking period of a pneumatic muscle walker. International Journal of Robotics Research, 25(9), 861–866.

    Article  Google Scholar 

  • Takuma, T., & Kase, W. (2017). Influence of trunk structure on posture transition from quadrupedalism to bipedalism. ROBOMECH Journal. https://doi.org/10.1186/s40648-017-0078-2.

  • Takuma, T., Izawa, R., Inoue, T., & Masuda, T. (2012). Mechanical design of a trunk with redundant and viscoelastic joints for rhythmic quadruped locomotion. Advanced Robotics, 26, 745–764.

    Article  Google Scholar 

  • Takuma, T., Murata, Y., & Kase, W. (2017). Design of vertebrae-inspired trunk mechanism for robust and directive quadruped locomotion on rough terrain without requiring sensing and actuation. Journal of Robotics and Mechatronics, 29(3), 546–555.

    Article  Google Scholar 

  • Vukobratovic, M., & Stephanenko, J. (1972). On the stability of anthropomorphic systems. Mathematical Biosciences, 15(1–2), 1–37.

    Article  MATH  Google Scholar 

  • Winter, D. A. (2009). Biomechanics and motor control of human movement (4th ed.). Hoboken: Wiley.

    Book  Google Scholar 

  • Wisse, M. (2004). Three additions to passive dynamic walking: Actuation, an upper body, and 3D stability. In IEEE RAS/RSJ international conference on humanoid robots (Humanoids 2004).

  • Wisse, M.,  & van Frankenhuyzen, J. (2002). Design and construction of MIKE; 2D autonomous biped based on passive dynamic walking. In 2nd international symposium on adaptive motion of animals and machines (AMAM).

  • Wisse, M., Hobbelen, D. G. E., & Schwab, A. L. (2007). Adding an upper body to passive dynamic walking robots by means of a bisecting hip mechanism. IEEE Transactions on Robotics, 23(1), 112–123.

    Article  Google Scholar 

  • Wisse, M., Schwab, A. L., & van der Helm, F. C. T. (2004). Passive dynamic walking model with upper body. Robotica, 22, 681–688.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Takuma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takuma, T., Oku, H., Asagi, N. et al. Design of vertebrae-inspired trunk mechanism for controlling walking behavior of semi-passive walker. Auton Robot 42, 1249–1262 (2018). https://doi.org/10.1007/s10514-017-9689-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10514-017-9689-y

Keywords

Navigation