Skip to main content
Log in

Parking objects by pushing using uncalibrated visual servoing

Autonomous Robots Aims and scope Submit manuscript

Abstract

Pushing is one of the strategies to perform robotic manipulation when the object is too large or too heavy. Motivated by this, we address the problem of how to push an object on a plane to a target pose with two cooperating robots. The main contribution is a new uncalibrated image-based control scheme that computes the required motion of the object to reach the target pose. Then, as an application of this control scheme, we study the conditions that allow performing the task of pushing the object with two robots. The setup consists of a fixed external uncalibrated camera looking at the workspace where the object and the robots stand. The task is defined with a target image of the object in the desired pose. The proposed control scheme computes the motion commands of the pusher robots and, as a result, they translate and rotate the object by imposing non-holonomic velocity constraints. This yields smooth, continuous and efficient trajectories. The stability of the control scheme is also proven. Experiments illustrate the performance of the control scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Adachi, J., & Sato, J. (2004). Uncalibrated visual servoing from projective reconstruction of control values. In 17th international conference on pattern recognition, ICPR (pp. 297–300).

  • Akella, S., & Mason, M. T. (1998). Posing polygonal objects in the plane by pushing. The International Journal of Robotics Research, 17(1), 70–88.

    Article  Google Scholar 

  • Akella, S., & Mason, M. T. (1999). Using partial sensor information to orient parts. International Journal of Robotics Research, 18(10), 963–997.

    Article  Google Scholar 

  • Balorda, Z., & Bajd, T. (1994). Reducing positioning uncertainty of objects by robot pushing. IEEE Transactions on Robotics and Automation, 10(4), 535–541.

    Article  Google Scholar 

  • Amor, H. B., Saxena, A., Hudson, N., & Peters, J. (2014). Special issue on autonomous grasping and manipulation. Autonomous Robots, 36, 1–3.

    Article  Google Scholar 

  • Brost, R. C. (1986). Automatic grasp planning in the presence of uncertainty. IEEE International Conference on Robotics and Automation, 3, 1575–1581.

    Google Scholar 

  • Cai, C., Somani, N., & Knoll, A. (2016). Orthogonal image features for visual servoing of a 6-dof manipulator with uncalibrated stereo cameras. IEEE Transactions on Robotics, 32(2), 452–461.

    Article  Google Scholar 

  • Caron, G., Marchand, E., & Mouaddib, E. M. (2013). Photometric visual servoing for omnidirectional cameras. Autonomous Robots, 35, 177–193.

    Article  Google Scholar 

  • Chaumette, F., & Hutchinson, S. (2006). Visual servo control, part I: Basic approaches. IEEE Robotics and Automation Magazine, 13(4), 82–90.

    Article  Google Scholar 

  • Chen, H., Sun, D., & Yang, J. (2009). Global localization of multirobot formations using ceiling vision SLAM strategy. Mechatronics, 19(5), 617–628.

    Article  Google Scholar 

  • Chesi, G., & Hashimoto, K. (Eds.) (2010). Visual servoing via advanced numerical methods (Vol. 401). Lecture notes in control and information sciences. Heidelberg: Springer.

  • Dogar, M., & Srinivasa, S. (2011). A framework for push-grasping in clutter. In Proceedings of robotics: Science and systems.

  • Gandolfo, F., Tistarelli, M., & Sandini, G. (1991). Visual monitoring of robot actions. In Workshop on intelligence for mechanical systems. IEEE/RSJ international conference on intelligent robots and systems (Vol. 1, pp. 269–275).

  • Golkar, M.A., Namin, S.T., & Aminaiee, H. (2009). Fuzzy controller for cooperative object pushing with variable line contact. In IEEE international conference on mechatronics (pp. 1–6).

  • Jara, C.A., Pomares, J., F.A. Candelas Herías, & Torres, F. (2014). Optimal control for robot-hand manipulation of an object using dynamic visual servoing. In IEEE/RSJ international conference on intelligent robots and systems (pp. 89–94).

  • Kopicki, M., Zurek, S., Stolkin, R., Moerwald, T., & Wyatt, J. L. (2016). Learning modular and transferable forward models of the motions of push manipulated objects. Autonomous Robots, 41, 1–22.

    Google Scholar 

  • Li, B., Fang, Y., & Zhang, X. (2014). Projection homography based uncalibrated visual servoing of wheeled mobile robots. In IEEE conference on decision and control (pp. 2167–2172).

  • Li, Q., & Payandeh, S. (2007). Manipulation of convex objects via two-agent point-contact push. The International Journal of Robotics Research, 26(4), 377–403.

    Article  Google Scholar 

  • Liang, X., Wang, H., Chen, W., Guo, D., & Liu, T. (2015). Adaptive image-based trajectory tracking control of wheeled mobile robots with an uncalibrated fixed camera. IEEE Transactions on Control Systems and Technology, 23(6), 2266–2282.

    Article  Google Scholar 

  • López-Nicolás, G., Özgür, E., & Mezouar, Y. (2015). Image-based control of two mobile robots for object pushing. In IEEE/RSJ international conference on intelligent robots and systems (pp. 5472–5478).

  • López-Nicolás, G., & Sagüés, C. (2011). Vision-based exponential stabilization of mobile robots. Autonomous Robots, 30, 293–306.

    Article  Google Scholar 

  • Lynch, K. M. (1992). The mechanics of fine manipulation by pushing. IEEE International Conference on Robotics and Automation, 3, 2269–2276.

    Google Scholar 

  • Lynch, K. M., Maekawa, H., & Tanie, K. (1992). Manipulation and active sensing by pushing using tactile feedback. IEEE/RSJ International Conference on Intelligent Robots and Systems, 1, 416–421.

    Article  Google Scholar 

  • Lynch, K. M., & Mason, M. T. (1996). Stable pushing: Mechanics, controllability, and planning. The International Journal of Robotics Research, 15(6), 533–556.

    Article  Google Scholar 

  • MacMillan, W. D. (1936). Dynamics of rigid bodies. NY: Dover.

    MATH  Google Scholar 

  • Malis, E. (2004). Visual servoing invariant to changes in camera-intrinsic parameters. IEEE Transactions on Robotics and Automation, 20(1), 72–81.

    Article  Google Scholar 

  • Marchand, E., Spindler, F., & Chaumette, F. (2005). Visp for visual servoing: A generic software platform with a wide class of robot control skills. IEEE Robotics Automation Magazine, 12(4), 40–52.

    Article  Google Scholar 

  • Mason, M. T. (1986). Mechanics and planning of manipulator pushing operations. The International Journal of Robotics Research, 5(3), 53–71.

    Article  Google Scholar 

  • Mason, M. T. (2001). Mechanics of robotic manipulation. Cambridge: MIT Press.

    Book  Google Scholar 

  • Meriçli, T., Veloso, M., & Akın, H. V. (2015). Push-manipulation of complex passive mobile objects using experimentally acquired motion models. Autonomous Robots, 38, 317–329.

    Article  Google Scholar 

  • Nammoto, T., Hashimoto, K., Kagami, S., & Kosuge, K. (2013). High speed/accuracy visual servoing based on virtual visual servoing with stereo cameras. In IEEE/RSJ international conference on intelligent robots and systems (pp. 44–49).

  • Okawa, Y., & Yokoyama, K. (1992). Control of a mobile robot for the push-a-box operation. IEEE International Conference on Robotics and Automation, 1, 761–766.

    Google Scholar 

  • Park, J. S., & Chung, M. J. (2003). Path planning with uncalibrated stereo rig for image-based visual servoing under large pose discrepancy. IEEE Transactions on Robotics and Automation, 19(2), 250–258.

    Article  Google Scholar 

  • Peshkin, M. A., & Sanderson, A. C. (1988). The motion of a pushed, sliding workpiece. IEEE Journal of Robotics and Automation, 4(6), 569–598.

    Article  Google Scholar 

  • Peshkin, M. A., & Sanderson, A. C. (1988). Planning robotic manipulation strategies for workpieces that slide. IEEE Journal of Robotics and Automation, 4(5), 524–531.

    Article  Google Scholar 

  • Piepmeier, J. A., McMurray, G. V., & Lipkin, H. (2004). Uncalibrated dynamic visual servoing. IEEE Transactions on Robotics and Automation, 20(1), 143–147.

    Article  Google Scholar 

  • Ramirez, O.A., & Jägersand, M. (2016). Practical considerations of uncalibrated visual servoing. In 13th conference on computer and robot vision, CRV (pp. 164–169).

  • Rezzoug, N., & Gorce, P. (1999). Dynamic control of pushing operations. Robotica, 17(6), 613–620.

    Article  Google Scholar 

  • Rus, D., Donald, B., & Jennings, J. (1995). Moving furniture with teams of autonomous robots. In IEEE/RSJ international conference on intelligent robots and systems (Vol. 1, pp. 235–242).

  • Salganicoff, M., Metta, G., Oddera, A., & Sandini, G. (1993). A direct approach to vision guided manipulation. In International conference on advanced robotics.

  • Shademan, A., & Jägersand, M. (2012). Robust sampling-based planning for uncalibrated visual servoing. In IEEE/RSJ international conference on intelligent robots and systems (pp. 2663–2669).

  • Sudsang, A., Rothganger, F., & Ponce, J. (2002). Motion planning for disc-shaped robots pushing a polygonal object in the plane. IEEE Transactions on Robotics and Automation, 18(4), 550–562.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by French Government research program Investissements d’avenir through the RobotEx Equipment of Excellence (ANR-10-EQPX-44), the LabEx IMobS3 (ANR7107LABX716701) and I-SITE Project (CAP 20-25) and by Spanish Government/European Union through Project DPI2015-69376-R (MINECO/FEDER).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gonzalo López-Nicolás.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (avi 9944 KB)

Supplementary material 2 (avi 1647 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

López-Nicolás, G., Özgür, E. & Mezouar, Y. Parking objects by pushing using uncalibrated visual servoing. Auton Robot 43, 1063–1078 (2019). https://doi.org/10.1007/s10514-018-9782-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10514-018-9782-x

Keywords

Navigation