Skip to main content
Log in

UAV route planning for active disease classification

  • Published:
Autonomous Robots Aims and scope Submit manuscript

Abstract

Eucalyptus represents one of the main sources of raw material in Brazil, and each year substantial losses estimated at $400 million occur due to diseases. The active monitoring of eucalyptus crops can help getting accurate information about contaminated areas, in order to improve response time. Unmanned aerial vehicles (UAVs) provide low-cost data acquisition and fast scanning of large areas, however the success of the data acquisition process depends on an efficient planning of the flight route, particularly due to traditionally small autonomy times. This paper proposes a single framework for efficient visual data acquisition using UAVs that combines perception, environment representation and route planning. A probabilistic model of the surveyed environment, containing diseased eucalyptus, soil and healthy trees, is incrementally built using images acquired by the vehicle, in combination with GPS and inertial information for positioning. This incomplete map is then used in the estimation of the next point to be explored according to a certain objective function, aiming to maximize the amount of information collected within a certain traveled distance. Experimental results show that the proposed approach compares favorably to other traditionally used route planning methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. In previous works (Souza et al. 2015), several different covariance functions were considered, and the Rational Quadratic produced better classification results.

  2. We employ line segments as the template for trajectory calculations, however Eq. 9 can be equally applied to any sort of curve, such as splines (Egerstedt and Martin 2001).

References

  • Albore, A., Peyrard, N., Sabbadin, R., & Teichteil-Knigsbuch, F. (2015a). Extending an online (re) planning platform for crop mapping with autonomous UAVs through a robotic execution framework. In Proceedings of ICAPS 2015 scheduling and planning applications workshop (SPARK).

  • Albore, A., Peyrard, N., Sabbadin, R., & Teichteil-Knigsbuch, F. (2015b). An online replanning approach for crop fields mapping with autonomous UAVs. In Proceedings of the twenty-fifth international conference on automated planning and scheduling, Jerusalem, Israel.

  • Bedendo, I. P. (1995). Doenças vasculares Manual de Fitopatologia: Princípios e Conceitos. São Paulo: Agronômica Ceres.

    Google Scholar 

  • Bernardini, S., Fox, M., & Long, D. (2014). Planning the behaviour of low-cost quadcopters for surveillance missions. In Proceedings of international conference on automated planning and scheduling, Portsmouth, USA.

  • Candiago, S., Remondino, F., de Giglio, M., Dubbini, M., & Gatelli, M. (2015). Evaluating multispectral images and vegetation indices for precision farming applications from UAV images. Remote Sensing, 7, 4026–4047.

    Article  Google Scholar 

  • Dalamagkidis, K., Valavanis, K. P., & Piegl, L. A. (2012). On integrating unmanned aircraft systems into the national airspace system into the national airspace system (2nd ed.). Berlin: Springer. ISBN 978-94-007-2478-5.

    Book  Google Scholar 

  • Degroote, A., Koch, P., & Lacroix, S. (2016). Integrating realistic simulation engines within the Morse framework. In 2016 IEEE/RSJ international conference on intelligent robots and systems, Daejeon, Korea.

  • Donald, B., Xavier, P., Canny, J., & Reif, J. (1993). Kinodynamic motion planning. Journal of the ACM, 40(5), 1048–1066.

    Article  MathSciNet  MATH  Google Scholar 

  • Duvenaud, D., Lloyd, J. R., Grosse, R., Tenenbaum, J. B., & Gharamani, Z. (2013). Structure discovery in nonparametric regression through compositional kernel search. In Proceedings of the international conference on machine learning.

  • Echeverria, G., Lassabe, N., Degroote, A., & Lemaignan, S. (2011). Modular open robots simulation engine: Morse. In 2011 IEEE international conference on robotics and automation (ICRA) (pp. 46–51). IEEE.

  • Echeverria, G., Lemaignan, S., Degroote, A., Lacroix, S., & Karg, M. (2012). Simulating complex robotic scenarios with Morse. In 3rd international conference on simulation, modeling, and programming for autonomous robots, Tsukuba, Japan.

  • Egerstedt, M., & Martin, C. F. (2001). Optimal trajectory planning and smoothing splines. Automatica, 37, 1057–1064.

    Article  MATH  Google Scholar 

  • Engelbrecht, A. P. (2006). Fundamentals of computational swarm intelligence. London: Wiley.

    Google Scholar 

  • FAA. (2016). Unmanned aircraft systems. Washington: Federal Aviation Administration.

    Google Scholar 

  • Ghamry, K. A., Kamel, M. A., & Zhang, Y. (2016). Cooperative forest monitoring and fire detection using a team of UAVS–UGVS. In International conference on unmanned aircraft systems (ICUAS).

  • Gonzalez, R. C., & Woods, R. E. (2002). Digital image processing. Upper Saddle River, NJ: Prentice Hall.

    Google Scholar 

  • Grocholsky, B., Keller, J., Kumar, V., & Pappas, G. (2006). Cooperative air and ground surveillance: A scalable approach to the detection and localization of targets by a network of UAVs and UGVs. IEEE Robotics & Automation Magazine, 13, 16–26.

    Article  Google Scholar 

  • Hensman, J., Fusi, N., & Lawrence, N. D. (2013). Gaussian processes for big data.

  • Ho, Y., & Liu, J. (2010). Simulated annealing based algorithm for smooth robot path planning with different kinematic constraints. In ACM symposium on applied computing, Sierre, Switzerland.

  • Hyttinen, E., Kragic, D., & Detry, R. (2015). Learning the tactile signatures of prototypical object parts for robust part-based grasping of novel objects. In IEEE international conference on robotics and automation.

  • Ingber, L., & Rosen, B. (1992). Genetic algorithms and very fast simulated reannealing: A comparison. Mathematical and Computer Modelling, 16, 87–100.

    Article  MathSciNet  MATH  Google Scholar 

  • Jensen, J. R. (2007). Remote sensing of the environment: An earth resource perspective. Upper Saddle River, NJ: Pearson Prentice Hall. ISBN-10: 0131889508.

    Google Scholar 

  • Karakaya, M. (2014). UAV route planning for maximum target coverage. International Journal of Computer Science and Engineering, 4(1), https://doi.org/10.5121/cseij.2014.4103.

  • Kim, S. J., Lim, G. J., Cho, J., & Côté, M. J. (2017). Drone-aided healthcare services for patients with chronic diseases in rural areas. Journal of Intelligent and Robotic Systems, 88, 163–180.

    Article  Google Scholar 

  • Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by simulated annealing. Science, 220, 671–680.

    Article  MathSciNet  MATH  Google Scholar 

  • Lavalle, M., & Kuffner, S. J. J. (2000). Rapidly-exploring random trees: Progress and prospects. In Proceedings of workshop on the algorithmic foundations of robotics, San Francisco.

  • Lemaignan, S., Hanheide, M., Karg, M., Khambhaita, H., Kunze, L., Lier, F., et al. (2014). Simulation and HRI recent perspectives with the MORSE simulator (pp. 13–24). Cham: Springer.

    Google Scholar 

  • Liu, Y., Zhong, Y., Chen, X., Wang, P., Lu, H., Xiao, J., & Zhang, H. (2016). The design of a fully autonomous robot system for urban search and rescue. In IEEE international conference on information and automation (ICIA).

  • Ludington, B., Johnson, E., & Vachtsevanos, G. (2006). Augmenting UAV autonomy: Vision-based navigation and target tracking for unmanned aerial vehicles. IEEE Robotics & Automation Magazine, 13, 63–71.

    Article  Google Scholar 

  • MAPA. (2015). Ministry of Agriculture, Livestock and Food Supply. a, 1:1.

  • Marchant, R. & Ramos, F. (2012). Bayesian optimisation for intelligent environmental monitoring. In 2012 IEEE/RSJ international conference on intelligent robots and systems (pp. 2242–2249).

  • Medeiro, F. L. L., & da Silva, J. D. S. (2010). A Dijkstra algorithm for fixed-wing UAV motion planning based on terrain elevation. Advances in Artificial Intelligence, Lecture Notes in Computer Science, 6404, 213–22.

    Google Scholar 

  • Meng, H., & Xin, G. (2010). UAV route planning based on the genetic simulated annealing algorithm. In International conference on mechatronics and automation, Xi’an, China.

  • Milliez, G., Ferreira, E., Fiore, M., Alami, R., & Lefèvre, F. (2014). Simulating human–robot interactions for dialogue strategy learning. In International conference on simulation, modeling, and programming for autonomous robots (pp. 62–73). Berlin: Springer.

  • Mulgaonkar, Y. & Kumar, V. (2014). Autonomous charging to enable long-endurance missions for small aerial robots. In Proceedings of micro and nanotechnology sensors, systems, and applications VI, Baltimore, United States.

  • Negro, D. R., Junior, T. A. F. S., Passos, J. R. S., Sansgolo, C. A., Minhoni, M. T. A., & Furtado, E. L. (2014). Biodegradation of eucalyptus urograndis wood by fungi. International Biodeterioration & Biodegradation, 89, 95–102.

    Article  Google Scholar 

  • Ng, A. Y. (2004). Feature selection, l1 vs. l2 regularization, and rotational invariance. In Proceedings of the twenty-first international conference on machine learning, ICML ’04, New York, NY, USA. New York: ACM.

  • Ojala, T., Pietikainen, M., & Maenpaa, T. (2002). Multiresolution gray-scale and rotation invariant texture classification with LBP. TPAMI, 24, 971–987.

    Article  MATH  Google Scholar 

  • Park, H., Lee, B. H. Y., & Morrison, J. R. (2017). Persistent UAV security presence service: Architecture and prototype implementation. In 2017 international conference on unmanned aircraft systems (ICUAS) (pp. 1800–1807).

  • Pérez-Ortiz, M., Gutiérrez, P. A., Peña, J. M., Torres-Sánchez, J., López-Granados, F., & Hervás-Martínez, C. (2016). Machine learning paradigms for weed mapping via unmanned aerial vehicles. In 2016 IEEE symposium series on computational intelligence (SSCI) (pp. 1–8).

  • Ponti, M., Chaves, A. A., Jorge, F. R., Costa, G. B. P., Colturato, A., & Branco, K. R. L. J. C. (2016). Precision agriculture: Using low-cost systems to acquire low-altitude images. IEEE Computer Graphics and Applications, 36(4), 14–20.

    Article  Google Scholar 

  • Popović, M., Hitz, G., Nieto, J., Sa, I., Siegwart, R., & Galceran, E. (2017). Online informative path planning for active classification using UAVs. In 2017 IEEE international conference on robotics and automation (ICRA) (pp. 5753–5758).

  • Quigley, M., Conley, K., Gerkey, B. P., Faust, J., Foote, T., Leibs, J., Wheeler, R., & Ng, A. Y. (2009). ROS: An open-source robot operating system. In ICRA workshop on open source software.

  • Rasmussen, C. E., & Williams, K. I. (2006). Gaussian processes for machine learning. Cambridge: MIT Press.

    MATH  Google Scholar 

  • Reid, A., Ramos, F., & Sukkarieh, S. (2011). Multi-class classification of vegetation in natural environments using an unmanned aerial system. In 2011—IEEE international conference on robotics and automation (ICRA), Shanghai, China.

  • Snelson, E., & Ghahramani, Z. (2006). Sparse Gaussian processes using pseudo-inputs. In Proceedings of the 18th International Conference on Neural Information Processing Systems (pp. 1257–1264).

  • Snoek, J., Larochelle, H., & Adams, R. P. (2012). Practical Bayesian optimization of machine learning algorithms. In Proceedings of the 25th International Conference on Neural Information Processing Systems (pp. 2951–2959).

  • Souza, J. R., Mendes, C. C. T., Guizilini, V., Vivaldini, K. C. T., Colturato, A., Ramos, F., & Wolf, D. F. (2015). Automatic detection of ceratocystis wilt in eucalyptus crops from aerial images. In 2015 IEEE international conference on robotics and automation (ICRA) (pp. 3443–3448).

  • Stoer, J., Bulirsch, R., Bartels, R. H., Gautschi, W., & Witzgall, C. (2002). Introduction to numerical analysis. Texts in Applied Mathematics. New York: Springer.

    Book  Google Scholar 

  • Tai, L., Li, S., & Liu, M. (2017). Autonomous exploration of mobile robots through deep neural networks (pp. 1–9).

  • Turker, T., Sahingoz, O. K., Springer, Yilmaz, G. (2015). 2D path planning for UAVs in radar threatening environment using simulated annealing algorithm. In International conference on unmanned aircraft systems, Denver, CO, USA.

  • Vivaldini, K. C. T., Guizilini, V., Oliveira, M. D. C., Martinelli, T. H., F.Ramos, & Wolf, D. F. (2016). Route planning for active classification with UAVs. In 2016—IEEE international conference on robotics and automation (ICRA), Stockholm, Sweden.

  • Weinstein, A. L., & Schumacher, C. (2007). UAV scheduling via the vehicle routing problem with time windows (p. 17).

  • Witwicki, S., Castillo, J. C., Messias, J., Capitan, J., Melo, F. S., Lima, P. U., & Veloso, M. (2017). Autonomous surveillance robots: A decision-making framework for networked muiltiagent systems (pp. 52–64).

  • Yang, K., Gan, S. K., & Sukkarieh, A. (2013). Gaussian process-based RRT planner for the exploration of an unknown and cluttered environment with an UAV. Advanced Robotics, 27, 431–443.

    Article  Google Scholar 

  • Zhou, Z. G., Zhang, Y. A., & Zhou, D. (2016). Geometric modeling and control for the full-actuated aerial manipulating system. In 2016 35th Chinese control conference (CCC) (pp. 6178–6182).

Download references

Acknowledgements

The authors acknowledge by the CNPq Foundation (process 400699/2016-8), CAPES and FAPESP for the financial support. This research project was also supported by funding from the Faculty of Engineering & Information Technologies, The University of Sydney, under the Faculty Research Cluster Program. Lastly, Federal University of Uberlândia. Funding was provided by CNPq - Brazil (Grant Nos. 400.395/2014-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kelen C. T. Vivaldini.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vivaldini, K.C.T., Martinelli, T.H., Guizilini, V.C. et al. UAV route planning for active disease classification. Auton Robot 43, 1137–1153 (2019). https://doi.org/10.1007/s10514-018-9790-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10514-018-9790-x

Keywords

Navigation