Skip to main content
Log in

Angular momentum-based control of an underactuated orthotic system for crouch-to-stand motion

  • Published:
Autonomous Robots Aims and scope Submit manuscript

Abstract

This paper presents an angular momentum-based controller for crouch-to-stand motion of a powered pediatric lower-limb orthosis. The control law is developed using an underactuated triple pendulum model representing the legs of an orthosis-dummy system where the hip and knee joints are actuated but the ankle joint is unpowered. The control law is conceived to drive the angular momentum of the system to zero, thereby bringing the system to a statically balanced upright configuration. The parameters of the dynamic model of the orthosis-dummy system are experimentally identified and used to synthesize the momentum-based controller. Control parameters are selected using closed-loop pole placement of the linearized system via numerical optimization to ensure local closed-loop stability with adequate damping and satisfactory response time without too large controller gains. The controller is applied in simulation to determine the region of viable initial conditions resulting in no knee hyperextension or loss of balance, as determined from a zero-moment point analysis. The controller is then implemented in experiment showing feasibility of the control strategy in practice. Results are compared against a similarly-synthesized linear-quadratic regulator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Al-Shuka, H. F. N., Corves, B., Zhu, W.-H., & Vanderborght, B. (2016). Multi-level control of zero-moment point-based humanoid biped robots: A review. Robotica, 34(11), 2440–2466. https://doi.org/10.1017/S0263574715000107.

    Article  Google Scholar 

  • Ansari, A., & Murphey, T. (2016). Sequential action control: Closed-form optimal control for nonlinear and nonsmooth systems. IEEE Transactions on Robotics, 32(5), 1196–1214. https://doi.org/10.1109/TRO.2016.2596768.

    Article  Google Scholar 

  • Aphiratsakun, N., & Parnichkun, M. (2009). Balancing control of AIT leg exoskeleton using ZMP based FLC. International Journal of Advanced Robotic Systems, 6(4), 34. https://doi.org/10.5772/7250.

    Article  Google Scholar 

  • Azad, M., & Featherstone, R. (2016). Angular momentum based balance controller for an under-actuated planar robot. Autonomous Robots, 40(1), 93–107. https://doi.org/10.1007/s10514-015-9446-z.

    Article  Google Scholar 

  • Brown, S. C., & Passino, K. M. (1997). Intelligent control for an acrobot. Journal of Intelligent and Robotic Systems, 18, 209–248.

    Article  Google Scholar 

  • Craig, J. J. (2005). Introduction to robotics: Mechanics and control. Upper Saddle River: Pearson/Prentice Hall.

    Google Scholar 

  • Esquenazi, A., Talaty, M., Packel, A., & Saulino, M. (2012). The ReWalk powered exoskeleton to restore ambulatory function to individuals with thoracic-level motor-complete spinal cord injury. American Journal of Physical Medicine and Rehabilitation, 91(11), 911–921. https://doi.org/10.1097/PHM.0b013e318269d9a3.

    Article  Google Scholar 

  • Farris, R. J., Quintero, H. A., & Goldfarb, M. (2011). Preliminary evaluation of a powered lower limb orthosis to aid walking in paraplegic individuals. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 19(6), 652–659. https://doi.org/10.1109/TNSRE.2011.2163083.

    Article  Google Scholar 

  • Fryar, C. D., Gu, Q., & Ogden, C. L. (2012). Anthropometric reference data for children and adults: United States, 2007–2010 (Vol. 252). Hyattsville, MD: National Center for Health Statistics.

    Google Scholar 

  • Gui, P., Tang, L., & Mukhopadhyay, S. (2015). MEMS based IMU for tilting measurement: Comparison of complementary and Kalman filter based data fusion. In 2015 IEEE 10th conference on industrial electronics and applications (ICIEA) (pp. 2004–2009). Presented at the 2015 IEEE 10th conference on industrial electronics and applications (ICIEA), Auckland: IEEE. https://doi.org/10.1109/ICIEA.2015.7334442.

  • Irfan, S., Mehmood, A., Razzaq, M. T., & Iqbal, J. (2018). Advanced sliding mode control techniques for Inverted Pendulum: Modelling and simulation. Engineering Science and Technology, an International Journal, 21(4), 753–759. https://doi.org/10.1016/j.jestch.2018.06.010.

    Article  Google Scholar 

  • Kwak, N.-S., Müller, K.-R., & Lee, S.-W. (2015). A lower limb exoskeleton control system based on steady state visual evoked potentials. Journal of Neural Engineering, 12(5), 056009. https://doi.org/10.1088/1741-2560/12/5/056009.

    Article  Google Scholar 

  • Laubscher, C. A., Farris, R. J., & Sawicki, J. T. (2017). Design and preliminary evaluation of a powered pediatric lower limb orthosis. In Proceedings of the ASME 2017 international design engineering technical conferences & computers and information in engineering conference. Presented at the MR-7 medical & rehabilitation robotics, Cleveland, OH.

  • Laubscher, C. A., & Sawicki, J. T. (2019a). Gait guidance control for damping of unnatural motion in a powered pediatric lower-limb orthosis. In IEEE/RAS-EMBS international conference on rehabilitation robotics. Presented at the IEEE/RAS-EMBS international conference on rehabilitation robotics (ICORR), Toronto, ON, CA.

  • Laubscher, C. A., & Sawicki, J. T. (2019b). Robust control-oriented modeling of a feedback-linearized powered pediatric lower-limb orthosis. In ASME international mechanical engineering congress & exposition (IMECE). Presented at the ASME international mechanical engineering congress & exposition (IMECE), Salt Lake City, Utah.

  • Rubinstein, R. A., Shelbourne, K. D., VanMeter, C. D., McCarroll, J. R., Rettig, A. C., & Gloyeske, R. L. (1995). Effect on knee stability if full hyperextension is restored immediately after autogenous bone-patellar tendon-bone anterior cruciate ligament reconstruction. The American Journal of Sports Medicine, 23(3), 365–368. https://doi.org/10.1177/036354659502300321.

    Article  Google Scholar 

  • Scalera, L., Gasparetto, A., & Zanotto, D. (2020). Design and experimental validation of a 3-DOF underactuated pendulum-like robot. IEEE/ASME Transactions on Mechatronics, 25(1), 217–228. https://doi.org/10.1109/TMECH.2019.2947915.

    Article  Google Scholar 

  • Siciliano, B., & Khatib, O. (2008). Springer handbook of robotics. Berlin: Springer.

    Book  Google Scholar 

  • Spong, M. W., Hutchinson, S., & Vidyasagar, M. (2006). Robot modeling and control. Hoboken: Wiley.

    Google Scholar 

  • Ugurlu, B., Doppmann, C., Hamaya, M., Forni, P., Teramae, T., Noda, T., et al. (2016). Variable ankle stiffness improves balance control: Experiments on a bipedal exoskeleton. IEEE/ASME Transactions on Mechatronics, 21(1), 79–87. https://doi.org/10.1109/TMECH.2015.2448932.

    Article  Google Scholar 

  • Vukobratović, M., & Borovac, B. (2004). Zero-moment point—Thirty five years of its life. International Journal of Humanoid Robotics, 1(1), 157–173.

    Article  Google Scholar 

  • Wang, H. O., Tanaka, K., & Griffin, M. F. (1996). An approach to fuzzy control of nonlinear systems: Stability and design issues. IEEE Transactions on Fuzzy Systems, 4(1), 10.

    Article  Google Scholar 

  • Winter, D. A. (2009). Biomechanics and motor control of human movement (4th ed.). Hoboken, NJ: Wiley.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerzy T. Sawicki.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

When the conditions \(L=\dot{L}=\ddot{L}=0\) are satisfied, a double pendulum will be in a statically balanced configuration as presented in Azad and Featherstone (2016). However, when these conditions are satisfied for the triple pendulum, there may still be motion in the system. This appendix derives the relation between the joint velocities when these conditions are satisfied.

The angular momentum L in (13) and its second derivative \(\ddot{L}\) in (14) can be rewritten as a linear combination of the link velocities.

$$ \begin{aligned} \left[ {\begin{array}{*{20}c} L \\ {\ddot{L}} \\ \end{array} } \right] & = {\varvec{M}}\left[ {\begin{array}{*{20}c} {\omega_{1} } \\ {\omega_{2} } \\ {\omega_{3} } \\ \end{array} } \right] \\ {\varvec{M}} & = \left[ {\begin{array}{*{20}c} {\varPhi_{2} + L_{1} \varPhi_{3} c_{2} + L_{1} \varPhi_{5} c_{23} } & {g\varPhi_{1} s_{1} } \\ {\varPhi_{4} + L_{1} \varPhi_{3} c_{2} + L_{2} \varPhi_{5} c_{3} } & {g\varPhi_{3} s_{12} } \\ {\varPhi_{6} + L_{1} \varPhi_{5} c_{23} + L_{2} \varPhi_{5} c_{3} } & {g\varPhi_{5} s_{123} } \\ \end{array} } \right]^{\text{T}} \\ \end{aligned} $$
(27)

The nullspace of the matrix M represents the set of link velocities which will result in \(L=\ddot{L}=0\). Since M is a function of the states of the system, the nullspace will be as well. Due to the unwieldy size of the expression, the nullspace is presented only for the upright configuration.

$$ \begin{aligned} & \text{null} \left( {{\varvec{M}}|_{{{\varvec{q}} = {\varvec{q}}_{0} }} } \right) = \text{span} \left\{ {\left[ {\begin{array}{*{20}c} {n_{1} } \\ {n_{2} } \\ {n_{3} } \\ \end{array} } \right]} \right\} \\ & n_{1} = \varPhi_{3} \varPhi_{6} - \varPhi_{4} \varPhi_{5} - L_{2} \varPhi_{5}^{2} + L_{2} \varPhi_{3} \varPhi_{5} \\ & n_{2} = \varPhi_{2} \varPhi_{5} - \varPhi_{1} \varPhi_{6} + L_{1} \varPhi_{5}^{2} \\ & \quad \quad - L_{1} \varPhi_{1} \varPhi_{5} - L_{2} \varPhi_{1} \varPhi_{5} + L_{1} \varPhi_{3} \varPhi_{5} \\ & n_{3} = \varPhi_{1} \varPhi_{4} - \varPhi_{2} \varPhi_{3} - L_{1} \varPhi_{3}^{2} \\ & \quad \quad + L_{1} \varPhi_{1} \varPhi_{3} + L_{2} \varPhi_{1} \varPhi_{5} - L_{1} \varPhi_{3} \varPhi_{5} \\ \end{aligned} $$
(28)

This means link velocities of the form ω1  =  α·n1, ω2  =  α·n2, and ω3  =  α·n3 for any \( \alpha \in {\mathbb{R}} \) will hold true if and only if \(L=\ddot{L}=0\), at least for the upright configuration. For the system in this paper, this gives necessary and sufficient conditions for \(L=\ddot{L}=0\) being joint velocities related by \(\dot{q}_2=-2.3243\cdot\dot{q}_1 \,\,\text{and}\,\, \dot{q}_3=1.7993\cdot\dot{q}_1\).

Appendix 2

The controller is synthesized based on pole placement of the linearized closed-loop system using numerical optimization. The state matrix of this system takes the form

$$ \begin{aligned} & {\varvec{A}} = \left[ {\begin{array}{*{20}c} \mathbf{0} & {{\varvec{I}}_{3} } \\ {{\hat{\varvec{K}}}} & {{\hat{\varvec{D}}}} \\ \end{array} } \right] \\ & {\hat{\varvec{K}}} = \left[ {\begin{array}{*{20}c} {k_{11} } & {k_{12} } & {k_{13} } \\ {k_{21} } & {k_{22} } & {k_{23} } \\ {k_{31} } & {k_{32} } & {k_{33} } \\ \end{array} } \right]\quad {\hat{\varvec{D}}} = \left[ {\begin{array}{*{20}c} {d_{11} } & {d_{12} } & {d_{13} } \\ {d_{21} } & {d_{22} } & {d_{23} } \\ {d_{31} } & {d_{32} } & {d_{33} } \\ \end{array} } \right] \\ \end{aligned} $$
(29)

where I3 is the 3  ×  3 identity matrix and the elements of the matrices \({{\hat{\varvec{K}}}}\) and \({{\hat{\varvec{D}}}}\) are affine in the control parameters. The full state matrix in terms of system parameters is too large to include in the manuscript. Instead, using the parameters of the system, the elements of the matrices as a function of the MBC gains is provided in Table 7 along with their numerical values for the selected controller.

Table 7 Elements of the linearized system state matrix

The eigenvalues of the state matrix from the numerical optimization are − 49.60, − 44.12, − 35.88, − 2.792, and − 2.786  ±  0.2052i. Since the real components are all strictly negative, the system is locally stable. This means the states will approach the equilibrium point, provided the system configuration and velocities are sufficiently close.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laubscher, C.A., Farris, R.J. & Sawicki, J.T. Angular momentum-based control of an underactuated orthotic system for crouch-to-stand motion. Auton Robot 44, 1469–1484 (2020). https://doi.org/10.1007/s10514-020-09938-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10514-020-09938-5

Keywords

Navigation