Skip to main content
Log in

Visual attention model based mining area recognition on massive high-resolution remote sensing images

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

With the development of remote sensing technology, satellite images with the characteristics of multi-scale, multi-band, and multi-date make it tend to be big data. So how to raise the extraction speed, precision and automatic degree of salient objects from high-resolution remote sensing images become urgent problems. Based on the analysis using an Itti visual attention model for natural image processing, we achieved improvements in two aspects: (1) the selection of salient regions based on elevation data, and (2) the segmentation of salient regions using the Snake model for precise object contour extraction. Tests on the extraction of 2.5 m high-resolution remote sensing image data in the rare earth mining area in Dingnan County, Jiangxi Province showed a false alarm rate of 14.8 % and a missing alarm rate of 8.4 % in the extraction of mine quantity data. The proposed method could be useful for improving the speed, precision and automatic extraction of salient objects from high-resolution remote sensing images as well as the boundary information of salient objects that are based on a visual attention model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wang, L., Lu, K., Liu, P., Ranjan, R., Chen, L.: IK-SVD: dictionary learning for spatial big data via incremental atom update. Comput. Sci. Eng. 16(4), 41–52 (2014)

    Article  Google Scholar 

  2. Miao, Y., Wang, L., Liu, D., Ma, Y., Zhang, W., Chen, L.: A web 2.0-based science gateway for massive remote sensing image processing. Concurr. Comput.: Pract. Exp. (2013). doi:10.1002/cpe.3049

  3. Ma, Y., Wang, L., Zomaya, A.Y., Chen, D., Ranjan, R.: Tasktree based large-scale mosaicking for massive remote sensed imageries with dynamic dag scheduling. IEEE Trans. Parallel Distrib. Syst. 25(8), 2126–2137 (2014)

    Article  Google Scholar 

  4. Zhang, W., Wang, L., Ma, Y., Liu, D.: Design and implementation of task scheduling strategies for massive remote sensing data processing across multiple data centers. Softw. Pract. Exp. 44(7), 873–886 (2014)

    Article  Google Scholar 

  5. Guo, H., Wang, L., Chen, F., Liang, D.: Scientific big data and digital earth. Chin. Sci. Bull. 59(35), 5066–5073 (2014)

    Article  Google Scholar 

  6. Treisman, A.M., Gelade, G.: A feature-integration theory of attention. Cogn. Psychol. 12(1), 97–136 (1980)

    Article  Google Scholar 

  7. Koch, C., Ullman, S.: Shifts in selective visual attention: towards the underlying neural circuitry. Hum. Eurobiol. 4, 219–227 (1985)

    Google Scholar 

  8. Oliva A., Torralba M., Castelhano S., et al.: Top-down control of visual attention in object detection. In: IEEE International Conference on Image Processing, pp. 253–256. (2003)

  9. Zhang, Q.R., Xiao, H.M.: A hierarchical computational model of visual attention using multi-layer analysis. In: International Conference on Communication Systems, Networks and Applications, pp. 267–270. (2010)

  10. Walther, D.B., Koch, C.: Attention in hierarchical models of object recognition. Prog. Brain Res. 165, 57–78 (2007)

    Article  Google Scholar 

  11. Feynman, R.P., Hibbs, A.R.: Quantum Mechanics and Path Integrals, p. l-365. McGraw-Hill, New York (1965)

    MATH  Google Scholar 

  12. Itti, L., Koch, C., Niebur, E.: A model of saliency-based visual attention for rapid scene analysis. IEEE Trans. PAMI 20(11), 1254–1259 (1998)

    Article  Google Scholar 

  13. Navalpakkam, V., Itti, L.: Modeling the influence of task on attention. Vis. Res. 45(2), 205–231 (2005)

    Article  Google Scholar 

  14. Sun, Y., Fisher, R.: Object-based visual attention for computer vision. Artif. Intell. 146(1), 77–123 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  15. Hou, X. and Zhang, L.: Saliency detection: a spectral residual approach. In: Computer Vision and Pattern Recognition, pp. 1–8. (2007)

  16. Frintrop, S.: VOCUS: a visual attention system for object detection and goal-directed search. Springer, Heidelberg (2006)

  17. Rybak, I.A., Gusakova, V.I., Golovan, A.V., et al.: A model of attention-guided visual perception and recognition. Visual Res. 38, 2387–2400 (1998)

    Google Scholar 

  18. Chernyak, D.A., Strark, L.W.: Top-down guided eye movements. IEEE Trans. Syst. Man Cybern. 31(4), 514–522 (2001)

    Article  Google Scholar 

  19. Burt, P.J., Adelson, E.H.: The Laplacian pyramid as a compact image code. Communications 31(4), 532–540 (1983)

    Google Scholar 

  20. Cohen, L.D. and Cohen, I.: A finite-element method applied to new activecontour models and 3-D reconstruction from cross sections. In: Proceedings of Third International Conference on Computer Vision, pp. 587–591. Osaka, JaPan.Dee (1990)

Download references

Acknowledgments

This work was supported by the grant from the National Natural Science Foundation of China (60972142), the ten-year investigation special ecological environment (STSN-10-03), the National High Technology Research and Development Program of China (2012BAH27B05), 135 Strategy Planning of Institute of Remote Sensing and Digital Earth, CAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guojin He.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, X., He, G., Zhang, Z. et al. Visual attention model based mining area recognition on massive high-resolution remote sensing images. Cluster Comput 18, 541–548 (2015). https://doi.org/10.1007/s10586-015-0438-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-015-0438-8

Keywords

Navigation