Skip to main content
Log in

Context-aware edge similarity segmentation algorithm of time series

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

This paper proposes a method of context-aware edge similarity segmentation algorithm of time series. The algorithm overcomes the machinery of traditional pattern discovery and traditional pattern matching and breaks the limitation of the fixed mode of boundary movement. The algorithm also has stronger adaptive capacity in the humanities sequence activities based on the network. Considering the edge connected by the adjacent points of time series as a fragment, and combining the similarity between the edges calculated by context relation to extract edge density, we can obtain data groups with similar characteristics with the clustering algorithm. This method can not only find the implicit relationships between edges, but also can increase time series segmentation robustness. Experimental results show that our algorithm can reduce the failure rate of segments caused by only considering the pattern matching, and has better anti-interference performance in noisy environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Lei, W., Xie, S., Su, D., Wang, G.: An autonomous detection and robust estimation method of spectrum anomaly based on time series analysis. Chin. J. Electron. 42(6), 1055–1060 (2014)

    Google Scholar 

  2. Meng, J., Xiao-jiang, C., Ding-yi, F.: Temperature-Adaptive time synchronization for wireless sensor networks. J. Softw. 43(2), 412–416 (2015)

    MathSciNet  Google Scholar 

  3. Ma, J., Liu, J., Wang, B.: A temperature field measurement method of billet based on multi-information fusion and the analysis of influencing factors. Chin. J. Electron. 43(8), 1616–1620 (2015)

    Google Scholar 

  4. Lake, B.M., Salakhutdinov, R., Tenenbaum, J.B.: Human-level concept learning through probabilistic program induction. Science 12(14), 1332–1339 (2015)

    Article  MathSciNet  Google Scholar 

  5. Yan, H., Yuan, N., He, W.: Detection of significant external trend in long-term air temperature records. Acta Phys. Sin. 64(2), 1–11 (2015)

    Google Scholar 

  6. Keogh, E., Chu, S., Hart, D., Pazzani, M.: Segmenting time series: a survey and novel approach. Data Min. Time Ser. Databases 57, 1–21 (2003)

    Article  Google Scholar 

  7. Liu, X., Lin, Z., Wang, H.: Novel online methods for time series segmentation. IEEE Trans. Knowl. Data Eng 20(12), 1616–1626 (2008)

    Article  Google Scholar 

  8. Lendasse, A., Lee, J., de Bodt, E., Wertz, V., Verleysen, M.: Dimension reductionof technical indicators for the prediction of financial time series-application to the BEL20 market index. Eur. J. Econ. Soc. Syst. 15(2), 31–48 (2001)

    Article  MATH  Google Scholar 

  9. Omranian, N., Mueller-Roeber, B., Nikoloski, Z.: Segmentation of biological multivariate time-series data. Sci. Rep. 5, 8937 (2015)

    Article  Google Scholar 

  10. Zou, C., Jiang, W., Tsung, F.: A lasso-based diagnostic framework for multivariate statistical process control. Technometrics 53(3), 297–309 (2011)

    Article  MathSciNet  Google Scholar 

  11. McCarty, J.A., Hastak, M.: Segmentation approaches in data-mining: acomparison of Rfm, chaid, and logistic regression. J. Bus. Res. 60(6), 656–662 (2007)

    Article  Google Scholar 

  12. Duchene, F., Garbay, C., Rialle, V.: Learning recurrent behaviors from heterogeneous multivariate time-series. Artif. Intell. Med. 39(1), 25–47 (2007)

    Article  Google Scholar 

  13. Tadepalli, S., Ramakrishnan, N., Mishra, B., Watson, L.T.. Helm, R.F.: Deriving Kripke structures from time series segmentation results. In: The 9th International Workshop on Discrete Event Systems, pp. 406–411 (2008)

  14. Picard, F., Lebarbier, E., Budinska, E., Robin, S.: Joint segmentation of multivariate gaussian processes using mixed linear models. Comput. Stat. Data Anal. 55(2), 1160–1170 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Angelosante, D., Giannakis, G.B.:. Sparse graphical modeling of piecewise-stationary time series. In: IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 1960–1963 (2011)

  16. Chung, F.L., Fu, T.C., Ng, V., Luk, R.W.P.: An evolutionary approach to pattern-based time series segmentation. IEEE Trans. Evol. Comput. 8(5), 471–489 (2004)

    Article  Google Scholar 

  17. Tseng, V.S., Chen, C.-H., Huang, P.-C., Hong, T.-P.: Cluster-based genetic segmentation of time series with DWT. Pattern Recogn. Lett. 30(13), 1190–1197 (2009)

    Article  Google Scholar 

  18. Aue, A., Cheung, R.C., Lee, T.C., Zhong, M.: Segmented model selection inquantile regression using the minimum description length principle. J. Am. Stat. Assoc. 109(507), 1241–1256 (2014)

    Article  MathSciNet  Google Scholar 

  19. Toyoda, M., Sakurai, Y., Ishikawa, Y.: Pattern discovery in data streams under the time warping distance. VLDB 22(3), 295–318 (2013)

    Article  Google Scholar 

  20. Xing-dong, W., Zhang-qiang, X., Xin-wu, L., Lei, L.: Antarctic ice-sheet freeze-thaw detection based on improved wavelet transform. Chin. J. Electron. 41(2), 402–406 (2013)

    Google Scholar 

  21. Bicego, M., Murino, V., Figueiredo, M.A.T.: Similarity-based clustering of sequences using hidden Markov models. In: Proceedings of the 3rd International Conference on Machine Learning and Data Mining in Pattern Recognition, pp. 86–95. Springer, Berlin (2003)

  22. Ramakrishnan, N., Tadepalli, S., Watson, L.T., Helm, R.F., Antoniotti, M.: Reverse engineering dynamic temporal models of biological processes and their relationships. Proc. Natl. Acad. Sci. USA 107(28), 12511–12516 (2010)

    Article  Google Scholar 

  23. Yang, K., Shahabi, C.: An efficient k-nearest neighbor search for multivariate time series. Inf. Comput. 205(1), 65–98 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. Ramoni, M., Sebastiani, P., Cohen, P.: Bayesian clustering by dynamics. Mach. Learn. 47(1), 91–121 (2002)

    Article  MATH  Google Scholar 

  25. Graves, D., Pedrycz, W.: Multivariate segmentation of time series with differential evolution. In: Proceedings of the Joint 2009 International Fuzzy Systems Association World Congress and 2009 European Society of Fuzzy Logic and Technology Conference, Lisbon, Portugal, pp. 1108–1113 (2009)

  26. Xu, B., Song, A., Fei, S.: Feature extraction and classification of EEG in online brain-computer interface. Chin. J. Electron. 39(5), 1025–1030 (2011)

    Google Scholar 

  27. Yi-ming, Y., Rong, P., Jia-lin, P.: A Comparative study on time series classification. Chin. J. Comput. 30(8), 1259–1266 (2007)

    Google Scholar 

  28. Alex, R., Alessandro, L.: Clustering by fast search and find of density peaks. Science 344(96191), 1492–1496 (2014)

    Google Scholar 

  29. Ahn, Y.-Y.: Link communities reveal multiscale complexity in networks. Nature 466(7307), 761–764 (2010)

    Article  Google Scholar 

  30. Omranian, N., Klie, S., Mueller-roeber, B., Nikoloski, Z.: Network-based segmentation of biological multivariate time series. PLoS One 8(5), 1–10 (2013)

    Article  Google Scholar 

  31. Zhu, Y., Dai, D., Xiong, Y.: A survey of the researchon similarity query technique of sequence data. J. Comput. Res. Dev. 42(2), 264–276 (2010)

    Google Scholar 

  32. Qiu-yan, Y., Shi-xiong, X.: An Piecewise linear fitting algorithm for infinite time series. Chin. J. Electron. 38(2), 443–448 (2010)

    Google Scholar 

  33. Wen-Jie, D., Guo-Ling, F., Zhi-Qiang, G., Jian-Ping, L.: Abrupt climate change detection based on heuristic segmentation algorithm. Acta Phys. Sin. 54(11), 5494–5499 (2005)

    Google Scholar 

  34. Kim, S.-H., Jeong, Y.-S.: Mobile image sensors for object detection using color segmentation. Clust. Comput. 16(4), 757–763 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lingyu Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Xu, L., Yu, J. et al. Context-aware edge similarity segmentation algorithm of time series. Cluster Comput 19, 1421–1436 (2016). https://doi.org/10.1007/s10586-016-0604-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-016-0604-7

Keywords

Navigation