Skip to main content

Advertisement

Log in

Bonded-cluster simulation of rock-cutting using PFC2D

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

The influence of hydrostatic pressure on rock-cutting based on Voronoi grain bonded-cluster model is investigated in this paper. Unconfined compressive strength and Brazilian tests are performed to calibrate the relations between micro-properties and mechanical properties of the rock sample. The influences of hydrostatic pressure, cutting velocity and cutting depth on rock-cutting are researched by particle flow code in 2 dimensions. With no hydrostatic pressure, the fractures in the upper area developed rather quickly into the rock along the horizontal direction when the cutter penetrates over 4 mm. The horizontal crack could eventually arrive at the free surface causing a large volume of fragment chips. Hydrostatic pressure could significantly influence the fracture evolution, inhibiting the formation of the long horizontal fracture. The influence of hydrostatic pressure on rock cutting becomes more and more obvious when the hydrostatic pressure is over 5 MPa. High hydrostatic pressure could inhibit the development of the fractures, increasing the energy requirements of drilling and effectively strengthening the rock. The influence of velocity on rock cutting is not obvious when the cutter penetration is less than 1 mm. However, the fracture volume presents a decreasing trend as the cutting velocity is increasing. There is an optimal cutting velocity for rock cutting, the corresponding optimal cutting velocity is 300 mm/s with high rock fragmentation efficiency. As the cutting depth increases, more and more micro-cracks are initiated around the cutter and the volume of the chipped fragmentation is increasing correspondingly. According to the simulation, it is believed that Voronoi grain-based model will contribute to a better understanding for the rock-tool interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28

Similar content being viewed by others

References

  1. Jia, L., Chen, M., Zhang, W., et al.: Experimental study and numerical modeling of brittle fracture of carbonate rock under uniaxial compression. Mech. Res. Commun. 50, 58–62 (2013)

    Article  Google Scholar 

  2. Menezes, P.L., Lovell, M.R., Avdeev, I.V., Higgs, C.F.: Studies on the formation of discontinuous rock fragments during cutting operation. Int. J. Rock Mech. Min. Sci. 71, 131–142 (2014)

    Google Scholar 

  3. Ghazvinian, E., Diederichs, M.S., Quey, R.: 3D random Voronoi grain-based models for simulation of brittle rock damage and fabric-guided micro-fracturing. J. Rock Mech. Geotech. Eng. 6, 506–521 (2014)

    Article  Google Scholar 

  4. Cundall, P.A., Hart, R.D.: Development of Generalized 2-D and 3-D Distinct Element Programs for Modeling Jointed Rock. Itasca Consulting Group Inc., Minneapolis (1985)

    Google Scholar 

  5. Mahabadi, O.K., Lisjak, A., Grasselli, G., Munjiza, A.: Y-Geo: a new combined finite discrete element numerical code for geomechanical applications. Int. J. Geomech. 12(6), 676–688 (2012)

    Article  Google Scholar 

  6. Cook, N.G.W., Hood, M., Tsai, F.: Observations of crack growth in hard rock loaded by an indenter. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 21(2), 97–107 (1984)

    Article  Google Scholar 

  7. Kuru, E., Wojtanowicz, A.K.: An experimental study of sliding friction between PDC drill cutters and rocks. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 32(3), 277–283 (1995)

    Article  Google Scholar 

  8. Alvarez, M., Grima, S.A., Miedema, R.G., van de Ketterij, R.G., et al.: Effect of high hyperbaric pressure on rock cutting process. Eng. Geol. 196, 24–36 (2015)

    Article  Google Scholar 

  9. Li, X.B., Summers, D.A., Rupert, G., Santi, P.: Experimental investigation on the breakage of hard rock by the PDC cutters with combined action modes. Tunn. Undergr. Space Technol. 16(2), 107–114 (2001)

    Article  Google Scholar 

  10. Kaitkay, P., Lei, S.: Experimental study of rock cutting under external hydrostatic pressure. J. Mater. Process. Technol. 159, 206–213 (2005)

    Article  Google Scholar 

  11. Pang, S.S., Goldsmith, W.: Investigation of crack formation during loading of brittle rock. Rock Mech. Rock Eng. 23, 53–63 (1990)

    Article  Google Scholar 

  12. Hoe, E., Martin, C.D.: Fracture initiation and propagation in intact rock—a review. J. Rock Mech. Geotech. Eng. 6, 287–300 (2014)

    Article  Google Scholar 

  13. Liu, H.Y., Kou, S.Q., Lindqvist, P.A., et al.: Numerical simulation of the rock fragmentation process induced by indenters. Int. J. Rock Mech. Min. Sci. 39(4), 491–505 (2002)

    Article  Google Scholar 

  14. Kou, S.Q., Lindqvist, P.A., Tang, C.A., Xu, X.H.: Numerical simulation of the cutting of inhomogeneous rocks. Int. J. Rock Mech. Min. Sci. 36, 711–717 (1999)

    Article  Google Scholar 

  15. Su, O., Akcin, A.: Numerical simulation of rock cutting using the discrete element method. Int. J. Rock Mech. Min. Sci. 48, 434–442 (2011)

    Article  Google Scholar 

  16. Alehossein, H., Hood, M.: State-of-the-art review of rock models for disc roller cutters. In: Aubertin, M., Hassani, F., Mitri, H. (eds.) Rock Mechanics, Balkema, Rotterdam, pp. 693–700 (1996)

  17. Cho, J.-W., Jeon, S., Yu, S.-H., Chang, S.-H.: Optimum spacing of TBM disc cutters: a numerical simulation using the three-dimensional dynamic fracturing method. Tunn. Undergr. Space Technol. 25(3), 230–244 (2010)

    Article  Google Scholar 

  18. Cho, N., Martin, C.D., Sego, D.C.: A clumped particle model for rock. Int. J. Rock Mech. Min. Sci. 44, 997–1010 (2007)

    Article  Google Scholar 

  19. Potyondy, D.O., Cundall, P.A.: Modeling notch-formation mechanisms in the URL mine-by test tunnel using bonded assemblies of circular particles. Int. J. Rock Mech. Min. Sci. 35, 510–511 (1998)

    Article  Google Scholar 

  20. Yoon, J.S., Zang, A., Stephansson, O.: Simulating fracture and friction of Aue granite under confined asymmetric compressive test using clumped particle model. Int. J. Rock Mech. Min. Sci. 49, 68–83 (2012)

    Article  Google Scholar 

  21. Ming, X., Chongbin, Z.: Simulation of rock deformation and mechanical characteristics using clump parallel-bond models. J. Central South Univ. 7, 2885–2893 (2014)

    Google Scholar 

  22. Wanne, T.S., Young, R.P.: Bonded-particle modelling of thermally fractured granite. Int. J. Rock Mech. Min. Sci. 45, 789–799 (2008)

    Article  Google Scholar 

  23. Park, J., Song, J.: Numerical simulation of a direct shear test on a rock joint using a bonded-particle model. Int. J. Rock Mech. Min. Sci. 46, 1315–1328 (2009)

    Article  Google Scholar 

  24. Hazzard, J.F., Young, R.P.: Simulating acoustic emissions in bonded-particle models for rock. Int. J. Rock Mech. Min. Sci. 37, 867–872 (2000)

    Article  Google Scholar 

  25. Diederich, M.S.: Rock fracture and collapse under low confinement conditions. Rock Mech. Rock Eng. 36, 339–381 (2003)

    Article  Google Scholar 

  26. Itasca Consulting Group, Inc. Software: PFC2D: examples, rock cutting. http://www.itascacg.com/pfc2d/ex_rockcut.php (2007)

  27. Quey, R., Dawson, P.R., Barbe, F.: Large-scale 3D random polycrystals for the finite element method: generation, meshing and remeshing. Comput. Methods Appl. Mech. Eng. 200, 1729–1745 (2011)

    Article  MATH  Google Scholar 

  28. Itasca Consulting Group, Inc. PFC2D (particle flow code in 2 dimensions), Version 4.0. ICG, Minneapolis (2008a)

  29. Itasca Consulting Group, Inc. PFC3D (particle flow code in 3 dimensions), Version 4.0. ICG, Minneapolis (2008b)

  30. Potyondy, D.O., Cundall, P.A.: A bonded-particle model for rock. Int. J. Rock Mech. Min. Sci. 41(8), 1329–1364 (2004)

    Article  Google Scholar 

  31. Hadjigeorgiou, J., Esmaieli, K., Grenon, M.: Stability analysis of vertical excavations in hard rock by integrating a fracture system into a PFC model. Tunn. Undergr. Space Technol. 24, 296–308 (2009)

    Article  Google Scholar 

  32. Yoon, J.: Application of experimental design and optimization to PFC model calibration in uniaxial compression simulation. Int. J. Rock Mech. Min. Sci. 44, 871–889 (2007)

    Article  Google Scholar 

  33. Rojek, J., Oñate, E., Labra, C., Kargl, H.: Discrete element simulation of rock cutting. Int. J. Rock Mech. Min. Sci. 48(6), 996–1010 (2011)

    Article  Google Scholar 

  34. Linqvist, P.A.: Rock fragmentation by indentation and disc cutting. Ph.D. thesis, University of Lulea (1982)

  35. Tan, X.C., Kou, S.Q., Lindqvist, P.A.: Application of the DDM and fracture mechanics model on the simulation of rock breakage by mechanical tools. Eng. Geol. 49(3), 277–284 (1998)

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by National Natural Science Funds (No.50878123 and No.11072257), National Natural Science Funds for Distinguished Young Scholar (No. 51025935 and No. 51009086), Young Scholars Development Fund of SWPU (201599010101) and Major State Basic Research Development Program of China (973 Program) (No. 2010CB732001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lv Yanxin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yanxin, L., Haibo, L., Xiaohua, Z. et al. Bonded-cluster simulation of rock-cutting using PFC2D. Cluster Comput 20, 1289–1301 (2017). https://doi.org/10.1007/s10586-017-0808-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-017-0808-5

Keywords

Navigation