Skip to main content
Log in

Coded-exposure camera and its circuits design

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

In the industrial production line, the motion of the target is the main reason for blurred image of the camera monitoring. A coded-exposure devices and circuits are designed to get restored image from this motion blurring. A given binary code sequence which represent open or close of shutter in CCD circuits driven by FPGA is used to control the exposure-time. The sampled images are processed by deconvolution algorithm and the high frequency information of them could be preserved by using the coded-exposure sequence resulting in blurred image restoration. The de-blurred problem could be converted to a well-posed from an ill-posed one. Experiments demonstrate that using the coded-exposure, the device proposed is able to improve the quality of blurred image.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Shan, Q., Jia, J., Agarwala, A.: High-quality motion deblurring from a single image. ACM Trans. Gr. 27(3), 15–19 (2008)

    Article  Google Scholar 

  2. Fujino, A., et al.: Exposure control device for a camera, J. Minolta Camera Kabushiki Kaisha Osaka, J. Minolta Camera Kabushiki Kaisha Osaka\(^{\wedge }\)Editors. 1988, US. p. 42

  3. Svensson, F., Tuvesson, J., Haals, L.: Method and control unit for controlling exposure of a camera, S. Axis AB Lund, S. Axis AB Lund\(^{\wedge }\)Editors. p. 15 (2016)

  4. Cao, Q.L., et al.: Adaptive exposure of space camera. Acta Photonica Sinica 45(8), 0822003.1–0822003.6 (2016)

  5. Su, Y., Kuo, C.C.J.: Fast and robust camera’s auto exposure control using convex or concave model. In: IEEE International Conference on Consumer Electronics (ICCE), NV, US, pp. 13–14 (2015)

  6. Su, Y., Lin, J.Y., Kuo, C.C.J.: A model-based approach to camera’s auto exposure control. J. Vis. Commun. Image Represent. 36, 122–129 (2016)

    Article  Google Scholar 

  7. Akiba, K.: Control of exposure of camera, A.J. Denso Corporation Kariya, A.J. Denso Corporation Kariya\(^{\wedge }\)Editors. US. p. 17 (2015)

  8. Murao, T.: Method of determining exposure control value for vehicle-mounted camera, A.J. Denso Corporation Kariya, A.J. Denso Corporation Kariya\(^{\wedge }\)Editors. 2016, US, p. 10

  9. Murao, T., Kimura, T.: Exposure control apparatus for vehicle-mounted camera, A.J. Denso Corporation Kariya, A.J. Denso Corporation Kariya\(^{\wedge }\)Editors. 2016, US, p. 11

  10. Grimm, M.: Camera-based driver assistance systems. Adv. Opt. Technol. 2(2), 131–140 (2016)

    Google Scholar 

  11. Haraguchi, Y., Shinohara, M.: Image blur correction unit, image blur compensation device, and optical apparatus, Kawasaki-shi, Kawasaki-shi\(^{\wedge }\)Editors, US. p. 19 (2015)

  12. Yasuda, K.: Camera shake compensation mechanism and optical apparatus using the camera shake compensation mechanism, I. Konica Minolta Photo Imaging, I. Konica Minolta Photo Imaging\(^{\wedge }\)Editors, US. p. 11 (2006)

  13. Bigas, M., et al.: Review of CMOS image sensors. Microelectron. J. 37(5), 433–451 (2006)

    Article  Google Scholar 

  14. Hamamoto, T., Aizawa, K.: A computational image sensor with adaptive pixel-based integration time. IEEE J. Solid-State Circuits 36(4), 580–585 (2001)

    Article  Google Scholar 

  15. Feng, W., et al.: Per-pixel coded exposure for high-speed and high-resolution imaging using a digital micromirror device camera. Sensors 16(3), 331–346 (2016)

    Article  MathSciNet  Google Scholar 

  16. Zhang, J., et al.: Compact all-CMOS spatiotemporal compressive sensing video camera with pixel-wise coded exposure. Opt. Express 24(8), 9013–24 (2016)

    Article  Google Scholar 

  17. Benezra, M., Nayar, S.K.: Motion-based motion deblurring. IEEE Trans. Pattern Anal. Mach. Intell. 26(6), 689–698 (2004)

    Article  Google Scholar 

  18. Tai, Y.W., et al.: Image/video deblurring using a hybrid camera. In: IEEE Conference on Computer Vision & Pattern Recognition, Alaska, USA (2008)

  19. Tai, Y.W., et al.: Correction of spatially varying image and video motion blur using a hybrid camera. IEEE Trans. Pattern Anal. Mach. Intell. 32(6), 1012–1028 (2010)

    Article  Google Scholar 

  20. Yitzhaky, Y., et al.: Direct method for restoration of motion-blurred images. J. Opt. Soc. Am. A 30200100(100), 1512–1519 (1998)

    Article  Google Scholar 

  21. Delgrande, J., et al.: Handling motion blur in multi-frame super-resolution. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 5224–5232 (2015)

  22. Delbracio, M., Sapiro, G.: Burst deblurring: removing camera shake through fourier burst accumulation. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2385–2393. IEEE, Boston, USA (2015)

  23. Lai, W.S., et al.: Blur kernel estimation using normalized color-line priors. In: IEEE Conference on Computer Vision and Pattern Recognition. Boston, USA (2015)

  24. Cho, T.S., et al.: Blur kernel estimation using the radon transform. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 241–248. Colorado, USA (2011)

  25. Jia, J.: Single image motion Deblurring using transparency. In: IEEE Conference on Computer Vision & Pattern Recognition, pp. 1–8. IEEE, MN, USA (2007)

  26. Levin, A., et al.: Motion-invariant photography. ACM Trans. Gr. 27(3), 2008 (2008)

    Article  MathSciNet  Google Scholar 

  27. Tai, Y.W., et al.: Coded exposure imaging for projective motion deblurring. Comput. Vision Pattern Recognit. 238(6), 2408–2415 (2010)

    Google Scholar 

  28. Cho, S., Lee, S.: Fast motion deblurring. ACM Trans. Graph. 28(5), 89–97 (2009)

    Article  Google Scholar 

  29. Cho, T.S., et al.: Motion blur removal with orthogonal parabolic exposures. In: IEEE International Conference on Computational Photography, MA, USA (2010)

  30. Agrawal, A., Xu, Y.: Coded exposure deblurring: optimized codes for PSF estimation and invertibility. In: IEEE Conference on Computer Vision & Pattern Recognition. FL, USA (2009)

  31. Raskar, R., Agrawal, A., Tumblin, J.: Coded exposure photography: motion deblurring using fluttered shutter. ACM Trans. Graph. 25(3), 795–804 (2006)

    Article  Google Scholar 

  32. McCloskey, S., Ding, Y., Yu, J.: Design and estimation of coded exposure point spread functions. IEEE Trans. Pattern Anal. Mach. Intell. 34(10), 2071–2077 (2012)

    Article  Google Scholar 

  33. Zhou, C., Nayar, S.: What are good apertures for defocus deblurring? In: IEEE International Conference on Computational Photography. San Francisco, USA (2009)

  34. Horita, Y., et al.: Coded aperture for projector and camera for robust 3D measurement. In: International Conference on Pattern Recognition. Tsukuba, Japan (2012)

  35. Su, S., Heidrich, W.: Rolling shutter motion deblurring. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1529–1537. MA, US (2015)

  36. Zhou, C., Lin, S., Nayar, S.K.: Coded aperture pairs for depth from defocus and defocus deblurring. Int. J. Comput. Vision 93(1), 325–332 (2011)

    Article  Google Scholar 

  37. Agrawal, A., Raskar, R.: Optimal single image capture for motion deblurring. In: IEEE Conference on Computer Vision & Pattern Recognition, pp. 2560–2567. FL, USA (2009)

  38. Tendero, Y., Osher, S.: On a mathematical theory of coded exposure. Res. Math. Sci. 3(1), 1–39 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  39. Dai, S., Wu, Y.: Motion from blur. In: IEEE Conference on Computer Vision & Pattern Recognition, Alaska, USA (2008)

  40. Huang, K., et al.: Motion Blur Identification Using Image Statistics for Coded Exposure Photography. Emerging Technologies for Information Systems, Computing, and Management. Springer New York, pp. 461–468 (2013)

  41. Zhou, Q., Luo, J.: Artificial neural network based grid computing of E-government scheduling for emergency management. Comput. Syst. Sci. Eng. 30(5), 327–335 (2015)

    Google Scholar 

  42. Zhou, Qingyuan: Research on heterogeneous data integration model of group enterprise based on cluster computing. Clust. Comput. 19(3), 1275–1282 (2016). doi:10.1007/s10586-016-0580-y

    Article  Google Scholar 

  43. Zhou, Q., Luo, J.: The service quality evaluation of ecologic economy systems using simulation computing. Comput. Syst. Sci. Eng. 31(6), 453–460 (2016)

    MathSciNet  Google Scholar 

  44. Fenimore, E.E., Cannon, T.M.: Coded aperture imaging with uniformly redundant arrays. Appl. Opt. 17(3), 337–47 (1978)

    Article  Google Scholar 

  45. Xu, C., S. Chao and M. Chan. A new correlated double sampling (CDS) technique for low voltage design environment in advanced CMOS technology. in Proceedings of the European Solid-State Circuits Conference. 2002. Firenze, Italy

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 61503054).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Sun, Y. Coded-exposure camera and its circuits design. Cluster Comput 20, 3003–3014 (2017). https://doi.org/10.1007/s10586-017-0964-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-017-0964-7

Keywords

Navigation