Skip to main content
Log in

Improving image steganalyser performance through curvelet transform denoising

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

The major challenge of feature based blind steganalysers lies in designing effective image features which give true evidence of the stego noise rather than the natural noise present in the images. Hence they report low detection accuracy in real time implementation in spite of employing 100s of features in the process. In this paper, we coin a new paradigm for detecting steganography by examining the task as a three-steps process with the following repercussions: (a) employing curvelet transform denoising as a pre-processing step that produces better stego noise residuals suppressing the natural noise residual rather than a general denoising step before feature extraction, (b) extracting various steganalytic features, both in spatial domain as well transform domain and (c) implementing the system based on an efficient classifier, multi-surface proximal support vector machine ensemble oblique random rotation forest, that provides detection rate superior to other existing classifiers. Extensive experimentation with huge database of clean and steganogram images produced from seven steganographic schemes with varying embedding rates, and using five steganalysers, shows that the proposed paradigm improves the detection accuracy substantially and proves to be a high performance strategy even at low embedding rates. This model can be employed as a preprocessing component for any image steganalyser and high performance accuracy can be obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Pevny, T., Filler, T., Bas, P.: Using high-dimensional image models to perform highly undetectable steganography. In: Bohme, R., SafaviNaini, R. (eds.) 12th International Workshop on Information Hiding. Lecture Notes in Computer Science, Calgary, Canada, 28–30 June, pp. 161–177. Springer, New York (2010)

  2. Holub, V., Fridrich, J.: Designing steganographic distortion using directional filters. In: IEEE Workshop on Information Forensic and Security, Tenerife, Canary Islands, 2–5 December, pp. 234–239 (2012)

  3. Holub, V., Fridrich, J., Denemark, T.: Universal distortion function for steganography in an arbitrary domain. EURASIP J. Inf. Secur. 1, 1–13 (2014). http://jis.eurasipjournals.com/content/2014/1/1

  4. Couchot, J.-F., Couturier, R., Guyeux, C.: STABYLO: steganography with adaptive, Bbs, and binary embedding at low cost. Ann. Telecommun. 70(9–10), 441–449 (2015). https://doi.org/10.1007/s12243-015-0466-7

  5. Luo, W., Huang, F., Huang, J.: Edge adaptive image steganography based on LSB matching revisited. IEEE Trans. Inf. Forensics Secur. 5(2), 201–214 (2010)

    Article  Google Scholar 

  6. Fridrich, J., Kodovsk, J.: Multivariate Gaussian model for designing additive distortion for steganography. In: 2013 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 2949–2953 (2013)

  7. Ker, A.D., Bas, P., Bohme, R., Cogranne, R., Craver, S., Filler, T., Fridrich, J., Pevny, T.: Moving steganography and steganalysis from the laboratory into the real world. In: Proceedings of the 1st ACM Workshop on Information Hiding and Multimedia Security, IH and MMSec’2013, Montpellier, France, June 2013, pp. 45–58. ACM (2013)

  8. Pevny, T.: Detecting messages of unknown length. In: Proceedings of SPIE Media Watermarking, Security, and Forensics, Part of IS and T/SPIE 21st Annual Symposium on Electronic Imaging, SPIE’2011, San Francisco, California, USA, vol. 7880 (2011)

  9. Fridrich, J., Kodovsky, J., Holub, V., Goljan, M.: Breaking HUGO—the process discovery. In: Proceedings of the 13th International Conference on Information Hiding, IH’2011, Prague, Czech Republic. Lecture Notes in Computer Science, vol. 6958, pp. 85–101. Springer (2011)

  10. Kodovsky, J., Fridrich, J.: On completeness of feature spaces in blind steganalysis. In: Proceedings of the 10th ACM Workshop on Multimedia and Security, MM and Sec’2008, Oxford, UK, September 2008, pp. 123–132 (2008)

  11. Fridrich, J., Kodovsky, J.: Rich models for steganalysis of digital images. IEEE Trans. Inf. Forensics Secur. 7(3), 868–882 (2012)

    Article  Google Scholar 

  12. Chang, C.-C., Lin, C.-J.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. 2, 27:1–27:27 (2011)

    Article  Google Scholar 

  13. Kodovsky, J., Fridrich, J., Holub, V.: Ensemble classifiers for steganalysis of digital media. IEEE Trans. Inf. Forensics Secur. 7(2), 432–444 (2012)

    Article  Google Scholar 

  14. Lubenko, I., Ker, A.D.: Steganalysis with mismatched covers: do simple classifiers help? In: Proceedings of the 14th ACM multimedia and Security Workshop, MM and Sec’2012, Coventry, UK, September 2012, pp. 11–18 (2012)

  15. Denemark, T., Sedighi, V., Holub, V., Cogranne, R., Fridrich, J.: Selection-channel-aware rich model for steganalysis of digital images. In: Proceedings of the IEEE International Workshop on Information Forensics and Security, WIFS’2014, Atlanta, GA, December 2014, pp. 48–53(2014)

  16. Cogranne, R., Denemark, T., Fridrich, J.: Theoretical model of the FLD ensemble classifier based on hypothesis testing theory. In: Proceedings of IEEE International Workshop on Information Forensics and Security, WIFS’2014, Atlanta, GA, December 2014, pp. 167–172 (2014)

  17. Chaumont, M., Kouider, S.: Steganalysis by ensemble classifiers with boosting by regression, and post-selection of features. In: Proceedings of IEEE International Conference on Image Processing, ICIP’2012, Lake Buena Vista (suburb of Orlando), Florida, USA, September 2012, pp. 1133–1136 (2012)

  18. Pasquet, J., Bringay, S., Chaumont, M.: Steganalysis with cover-source mismatch and a small learning database. In: Proceedings of the 22nd European Signal Processing Conference 2014, EUSIPCO’2014, Lisbon, Portugal, September 2014, pp. 2425–2429 (2014)

  19. Avcibas, I., Kharrazi, M., Memon, N., Sankur, B.: Image steganalysis with binary similarity measures. EURASIP J. Appl. Signal Process. 17, 2749–2757 (2005)

    MATH  Google Scholar 

  20. Gul, G., Kurugollu, F.: SVD-based universal spatial image steganalysis. IEEE Trans. Inf. Forensics Secur. 5(2), 349–353 (2010)

    Article  Google Scholar 

  21. Yu, J., Li, F., Cheng, H., Zhang, X.: Spatial steganalysis using contrast of residuals. IEEE Signal Process. Lett. (2016). https://doi.org/10.1109/LSP.2016.2575100

  22. Chen, X., Wang, Y., Tan, T., Guo, L.: Blind image steganalysis based on statistical analysis of empirical matrix. In: Proceedings of the 18th International Conference on Pattern Recognition (ICPR), Hong Kong, China, pp. 11–7–10 (2006)

  23. Fridrich, J., Kodovsky, J., Holub, V., Goljan, M.: Steganalysis of content-adaptive steganography in spatial domain. In: Proceedings of the 13th International Workshop on Information Hidings, Prague, Czech Republic. LNCS, vol. 6958, pp. 102–112 (2011)

  24. Xuan, G., Shi, Y.Q., Huang, C., Fu, D., Zhu, X., Chai, P.: Steganalysis using high-dimensional features derived from co-occurrence matrix and class-wise non principal components analysis (CNPCA). In: Proceedings of the 5th International workshop on Digital Watermarking, vol. 4283, pp. 49–60 (2006)

  25. Wang, P., Wei, Z., Xiao, L.: Fast projections of spatial rich model feature for digital image steganalysis. Soft Comput. (2016a). https://doi.org/10.1007/s00500-015-2011-z

  26. Wang, P., Wei, Z., Xiao, L.: Pure spatial rich model features for digital image steganalysis. Multimed. Tools Appl. 75(5), 2897–2912 (2016b)

    Article  Google Scholar 

  27. Zhang, Y., Luo, X., Yang, C., Liu, F.: Joint JPEG compression and detection-resistant performance enhancement for adaptive steganography using feature regions selection. Multimed. Tools Appl. 76(3), 3649–3668 (2017)

    Article  Google Scholar 

  28. Shi, Y.Q., Chen, C., Chen, W.: A Markov process based approach to effective attacking JPEG steganography. In: Proceedings of the International Workshop on Information Hiding IH, pp. 249–264 (2006)

  29. Feng, B., Lu, W., Sun, W.: Binary image steganalysis based on pixel mesh Markov transition matrix. J. Vis. Image Represent. 26, 284–295 (2015)

    Article  Google Scholar 

  30. Pevny, T., Bas, P., Fridrich, J.: Steganalysis by subtractive pixel adjacency matrix. IEEE Trans. Inf. Forensics Secur. (2010). https://doi.org/10.1109/TIFS.2010.2045842

  31. Chen, X., Gao, G., Liu, D., Xia, Z.: Steganalysis of LSB matching using characteristic function moment of pixel differences. China Commun. (2016). https://doi.org/10.1109/CC.2016.7559077

  32. Laimeche, L., Merouani, H.F., Mazouzi, S.: A new feature extraction scheme in wavelet transform for stego image classification. Evol. Syst. (2017). https://doi.org/10.1007/s12530-017-9174-z

  33. Chaeikar, S.S., Zamani, M., Manaf, A.B.A., Zeki, A.M.: PSW statistical LSB image steganalysis. Multimed. Tools Appl. (2017). https://doi.org/10.1007/s11042-016-4273-6

  34. Pathak, P., Selvakumar, S.: Blind image steganalysis of JPEG images using feature extraction through the process of dilation. Digit. Investig. 11, 67–77 (2014)

    Article  Google Scholar 

  35. Yu, J., Zhang, X., Li, F.: Spatial steganalysis using redistributed residuals and diverse ensemble classifier. Multimed. Tools Appl. 75, 13613–13625 (2016)

    Article  Google Scholar 

  36. Li, F., Wu, K., Lei, J., Wen, M., Bi, Z., Gu, C.: Steganalysis over large-scale social networks with high-order joint features and clustering ensembles. IEEE Trans. Inf. Forensics Secur. 11(2), 344–357 (2016)

  37. Gireesh Kumar, T., Jithin, R., Shankar, D.D.: Feature based steganalysis using wavelet decomposition and magnitude statistics. In: Proceedings of International Conference on Advances in Computer Engineering, pp. 298–300 (2010)

  38. Lie, W.-N., Lin, G.-S.: A feature-based classification technique for blind image steganalysis. IEEE Trans. IFS (2005). https://doi.org/10.1109/TMM.2005.858377

  39. Xia, Z., Sun, X., Liang, W., Qin, J., Li, F.: JPEG image steganalysis using joint discrete cosine transform domain feature. J. Electron. Imaging (2010). https://doi.org/10.1117/1.3421972

  40. Zong, H., Liu, F-l, Luo, X-y: Blind image steganalysis based on wavelet coefficient correlation. Digit. Investig. 9(1), 58–68 (2012)

    Article  Google Scholar 

  41. Geetha, S., Sivatha Sindhu, S.S., Kamaraj, N.: Passive steganalysis based on higher order image statistics of curvelet transform. Int. J. Autom. Comput. 10(4), 531–542 (2010)

    Article  Google Scholar 

  42. Muthuramalingam, S., Karthikeyan, N., Geetha, S., Sindhu, S.S.: Sindhu, Siva S.: Stego anomaly detection in images exploiting the curvelet higher order statistics using evolutionary support vector machine. Multimed. Tools Appl. 75(21), 13627–13661 (2016)

    Article  Google Scholar 

  43. Starck, J.-L., Candes, E.J., Donoho, D.L.: The curvelet transform for image denoising. IEEE Trans. Image Process. (2002). https://doi.org/10.1109/TIP.2002.1014998

  44. Candes, E., Demanet, L., Donoho, D., Ying, L.: Fast discrete curvelet transforms. SIAM Multiscale Model. Simul. (2006). https://doi.org/10.1137/05064182X

  45. PictureMarc, Embed Watermark, v 1.00.45. Digimarc Corp

  46. Kutterand, M., Jordan, F.: JK-PGS (Pretty Good Signature). Signal Processing Laboratory, Swiss Federal Institute of Technology (EPFL), Lausanne. http://ltswww.epfl.ch/ kutter/watermarking/JK PGS.html (1998)

  47. Cox, I.J., Kilian, J., Leighton, F.T., Shamoon, T.: Secure spread spectrum watermarking for multimedia. IEEE Trans. Image Process. 6(12), 1673–1687 (1997)

    Article  Google Scholar 

  48. Brown, A.: S-Tools Version 4.0. http://members.tripod.com/steganography/stego/s-tools4.html

  49. Steganos Security Suite. http://www.steganos.com/english/steganos/download.htm

  50. Korejwa, J.: Shell 2.0. http://www.tiac.net/users/korejwa/steg.htm

  51. Kim, Y.S., Kwon, O.H., Park, R.H.: Wavelet based watermarking method for digital images using the human visual system. Electron. Lett. 35(6), 466–468 (1999)

    Article  Google Scholar 

  52. Kaushal, S., Anindya, S., Manjunath, B.S.: YASS: yet another steganographic scheme that resists blind steganalysis. In: 9th International Workshop on Information Hiding, Saint Malo, Brittany, France, June (2007)

  53. Images. http://www.cl.cam.ac.uk/~fapp2/watermarking/benchmark/image_database.html

  54. Feng, L., Lin, L.: Image denoising methods based on wavelet transform and threshold functions. J. Multimed. Process. Technol. 8(1), 1–10 (2017)

    Google Scholar 

  55. Suresh, A., Varatharajan, R.: Competent resource provisioning and distribution techniques for cloud computing environment. Clust. Comput. J. Netw. Softw. Tools Appl. ISSN: 1386-7857 (Print), 1573-7543 (2017) (Online). https://doi.org/10.1007/s10586-017-1293-6

  56. Sajedi, H.: Image steganalysis using Artificial Bee Colony algorithm. J. Exp. Theor. Artif. Intell. 29(5), 949–966 (2017)

    Article  MathSciNet  Google Scholar 

  57. Sedighi, V., Fridrich, J.: Histogram layer, moving convolutional neural networks towards feature-based steganalysis. Electron. Imaging 2017(7), 50–55 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Geetha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hemalatha, J., Devi, M.K.K. & Geetha, S. Improving image steganalyser performance through curvelet transform denoising. Cluster Comput 22 (Suppl 5), 11821–11839 (2019). https://doi.org/10.1007/s10586-017-1500-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-017-1500-5

Keywords

Navigation