Skip to main content
Log in

Escalating quality of services with channel assignment and traffic scheduling in wireless mesh networks

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

Wireless mesh networks (WMN) is an budding technology that provides affluent assortment of applications that engross in future generation networking technologies. WMN is promising network habitually considered for its architecture due to its adaptability of its node. A node in WMN acts as a client and as well as a server processing hop by hop transmission. We minimize delay using Tabu search optimization and followed by traffic scheduling enhancing the quality of services in WMN. The simulation results prove our proposed work achieved in many quality of services.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ahuja, R.K., Magananti, T.L., Orlin, J.: Networkflows: Theory Algorithms and Applications. China Machine Press, Beijing (1993)

    Google Scholar 

  2. Liu, C.Y., Fu, B., Haung, H.J.: Delay minimization and priority scheduling in wireless mesh networks. Wirel. Netw. 20, 1955–1965 (2014)

    Article  Google Scholar 

  3. Girgis, M.R, Mahmoud, T.M., Abdullatif, B.A.: Solving wireless mesh network design problem using genetic algorithm and Tabu search optimization methods. Int. J. Comput. Netw. Wirel. Commun. 4(2) (2014)

  4. Bortnikov, E., Kol, T., Vaisman, A.: Qmesh: a qosmesh network with mobility support. Mob. Comput. Commun. Rev. 12(1), 46–48 (2008)

    Article  Google Scholar 

  5. Alizadeh-Shabdiz, F., Subramaniam, S.: Analytical models for single-hop and multi-hop ad hoc networks. Mob. Netw. Appl. 11(1), 75–90 (2004)

    Article  Google Scholar 

  6. Boorstyn, R.R., Kershenbaum, A., Maglaris, B., Sahin, V.: Throughput analysis in multihop CSMA packet radio networks. IEEE Trans. Commun. 35(3), 267–274 (1987)

    Article  Google Scholar 

  7. Anindo Mukherjee, W.L., Agrawal, D.P.: Performance analysis of IEEE 802.11 for multi-hop infrastructure networks. IEEE GlobeCom 6, 3902–3906 (2005)

    Google Scholar 

  8. Kaynia, M., Jindal, N., Øien, G.E.: Performance analysis and improvement of MAC protocols in wireless ad hoc networks. IEEE Trans. Wirel. Commun. 10(1), 240–252 (2011)

    Article  Google Scholar 

  9. Mogaibel, H.A., Othman, M.: Review of routing protocols and its metrics for wireless mesh networks. In: Computer Science and Information Technology-Spring Conference, 2009. IACSITSC’09. International Association of, pp. 62–70. IEEE (2009)

  10. Li, H., Lott, M., Weckerle, M., Zirwas, W., Schulz, E.: Multihop communications in future mobile radio networks. In: Proc, IEEE PIMRC Lisbon, Portugal, pp. 54–58 (2002)

  11. Pantisano, F., Bennis, M., Saad, W., Debbah, M, Latva-aho, M.: On the impact of heterogeneous backhauls on coordinated multipoint transmission in femtocell networks. In: Proc. IEEE ICC, Ottawa, ON, Canada, pp. 5064–5069 (2012)

  12. Jiang, T.: Reinforcement learning-based spectrum sharing for cognitive radio. Ph.D. dissertation, Dept. Electron., Univ. York, York, UK (2009)

  13. Shah, V., Krishnamurthy, S.: Handling asymmetry in power heterogeneous ad hoc networks: a cross-layer approach. In: Proc. 25th IEEE ICDCS, Columbus, OH, USA, pp. 749–759 (2005)

  14. Suga, J., Tafazolli, R.: Joint resource management with reinforcement learning in heterogeneous networks. In: Proc. IEEE 78th VTC—Fall, Las Vegas, NV, USA, pp. 1–5 (2013)

  15. Watkins, P.J.C.H., Dayan, P.: Q-learning. Mach. Learn. 8, 219–292 (1992)

    MATH  Google Scholar 

  16. De Couto, D.S.J., Aguayo, D., Bicket, J., Morris, R.: A high throughput path metric for multi-hop wireless routing. In: Proc, ACM MobiCom, New York, NY, USA, pp. 134–146 (2003)

  17. Draves, R., Padhye, J., Zill, B.: Routing in multi-radio, multi-hop wireless mesh networks. In: Proc, ACM MobiCom, New York, NY, USA, pp. 114–28 (2004)

  18. Yang, Y., Wang, J., Kravets, R.: Designing routing metrics for mesh networks. In: Proc. IEEE Workshop Wireless Mesh Netw., pp. 1–9 (2005)

  19. Kamerman, A., Monteban, L.: Wavelan—II: a high-performance wireless LAN for the unlicensed band. Bell Labs Tech. J. 2(3), 118–133 (1997)

    Article  Google Scholar 

  20. Lacage, M., Manshaei M., Turletti, T.: EEE 802.11 rate adaptation: a practical approach. In Proc. 7th ACM Int. Symp. MSWiM, Venezia, Italy, pp. 126–134 (2004)

  21. Madwifi Onoe Specification. http://sourceforge.net/projects/madwifi

  22. Wu, H., Qiao, C., De, S., Tonguz, O.: Integrated cellular and ad hoc relaying systems: iCAR. IEEE J. Sel. Areas Commun. 19(10), 2105–2115 (2001)

    Article  Google Scholar 

  23. Dixit, S., Yanmaz, E., Tonguz, O.K.: On the design of self-organized cellular wireless networks. IEEE Commun. Mag. 43(7), 86–93 (2005)

    Article  Google Scholar 

  24. Luo, H., Ramjee, R., Sinha, P., Li, L.E., Lu, S.: UCAN: a unified cellular and ad-hoc network architecture. In: Proc, ACM MobiCom, San Diego, CA, USA, pp. 353–367 (2003)

  25. Glover, F.: Future paths for integer programming and links to artificial intelligence. Comput. Oper. Res. 13(5), 533–549 (1986)

    Article  MathSciNet  Google Scholar 

  26. Zhang, J., Hong, P., Xue, H., Zhang, H.: A novel power control scheme for femtocell in heterogeneous networks. In: Proc., IEEE CCNC Las Vegas, NY, USA, pp. 802–806. (2012)

  27. Palanisamy, P., Nirmala, S.: Downlink interference management in femtocell networks–a comprehensive study and survey. In: Proc. IEEE ICICES, Chennai, India, pp. 747–754 (2013)

  28. Stuedi, P., Alonso, G.: Transparent heterogeneous mobile ad hoc networks. In: Proc. 2nd Annu. Int. Conf. Mobile Ubiquitous Syst., Netw. Serv., San Diego, CA, USA, 237–246 (2005)

  29. Du, X., Wu, D., Liu, W., Fang, Y.: Multiclass routing and medium access control for heterogeneous mobile ad hoc networks. IEEE Trans. Veh. Technol. 55(1), 270–277 (2007)

    Article  Google Scholar 

  30. Le, T., Sinha, P., Xuan, D.: Turning heterogeneity into an advantage in wireless ad-hoc network routing. Ad Hoc Netw. 8(1), 108–118 (2006)

    Article  Google Scholar 

  31. Waheed, M., Karibasappa, K.: QoS routing for heterogeneous mobile ad hoc networks. Int. J. Comput. Eng. Sci. 2(3), 77–81 (2012)

    Google Scholar 

  32. Fujiwara, S., Ohta, T., Kakuda, Y.: An inter-domain routing for heterogeneous mobile ad hoc networks using packet conversion and address sharing. In: Proc. IEEE 32nd ICDCSW,Macau, China, pp. 349–355 (2012)

  33. Kunavut, K., Sanguankotchakorn, T.: QoS routing for heterogeneous mobile ad hoc networks based on multiple exponents in the definition of the weighted connectivity index. In: Proc. IEEE 7th Int. Conf. SITIS, Dijon, France, pp. 1–8 (2011)

  34. Fatos, X., Christian, S., Admir, B., Makoto, T., Tabu, A.: Search algorithm for efficient node placement in wireless mesh networks. In: 2011 Third International Conference on Intelligent networking and collaborative systems, pp. 53–59 (2011)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Revathy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Selvakumar, K., Revathy, G. Escalating quality of services with channel assignment and traffic scheduling in wireless mesh networks. Cluster Comput 22 (Suppl 5), 11949–11955 (2019). https://doi.org/10.1007/s10586-017-1528-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-017-1528-6

Keywords

Navigation