Skip to main content
Log in

Near-surface snowmelt detection on the Greenland ice sheet from FengYun-3 MWRI data

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

The melt extent on the Greenland ice sheet plays an important role in energy balance, and the Arctic and global climates. The micro-wave radiation imager (MWRI) is one of the major payloads of Chinese second-generation polar-orbiting meteorological satellite, FengYun-3 (FY-3), and it is similar to the special sensor microwave/image (SSM/I). The cross-polarized gradient ratio (XPGR) is mainly applied in the scanning multichannel microwave radiometer (SMMR) (18 GHz horizontal polarization (18 H) and 37 GHz vertical polarization (37 V)), the advanced microwave scanning radiometer-earth observing system (AMSR-E) (18.7 GHz horizontal polarization (18 H) and 36.5 GHz vertical polarization (36 V)) and SSM/I (19.3 GHz horizontal polarization (19 H) and 37 GHz vertical polarization (37 V)), which increases the differences between dry and wet snow. The hyperplane of support vector machine (SVM) is used to detect the melt information based on the XPGR data on the Greenland ice sheet, which has higher detection accuracy comparing with the existing threshold methods in theory. The results were compared with the SSM/I data (threshold = − 0.0154), and the results show that the proposed method (That is XPGR combining with SVM) for MWRI data is feasible for the detection of the near-surface snowmelt information on the Greenland ice sheet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ashcraft, I.S., Long, D.G.: Comparison of methods for melt detection over Greenland using active and passive microwave measurements. Int. J. Remote Sens. 27(12), 2469–2488 (2006)

    Article  Google Scholar 

  2. Waske, B., Benediktsson, J.A.: Fusion of support vector machines for classification of multisensor data. IEEE Trans. Geosci. Remote Sens. 45(12), 3858–3866 (2007)

    Article  Google Scholar 

  3. Tedesco, M., Fettweis, X., van den Broeke, M.R., et al.: The role of albedo and accumulation in the 2010 melting record in Greenland. Environ. Res. Lett. 6(1), 014005 (2011)

    Article  Google Scholar 

  4. Tedesco, M.: Snowmelt detection over the Greenland ice sheet from SSM/I brightness temperature daily variations. Geophys. Res. Lett. 34(2), 155–164 (2007)

    Article  Google Scholar 

  5. Liang, L., Guo, H.D., Li, X.W., et al.: Automated ice-sheet snowmelt detection using microwave radiometer measurements. Polar Res. 32, 19746 (2013)

    Article  Google Scholar 

  6. Abdalati, W., Steffen, K., Otto, C., et al.: Comparison of brightness temperatures from SSMI instruments on the DMSP F8 and F11 satellites for Antarctica and the Greenland Ice Sheet. Int. J. Remote Sens. 16(7), 1223–1229 (1995)

    Article  Google Scholar 

  7. Liu, J.P., Chen, Z.Q., Francis, J., et al.: Has Arctic Sea Ice Loss contributed to increased surface melting of the Greenland Ice Sheet? J. Clim. 29(9), 3373–3386 (2016)

    Article  Google Scholar 

  8. Abdalati, W., Steffen, K.: Passive microwave-derived snow melt regions on the Greenland Ice-Sheet. Geophys. Res. Lett. 22(7), 787–790 (1995)

    Article  Google Scholar 

  9. Abdalati, W., Steffen, K.: Snowmelt on the Greenland ice sheet as derived from passive microwave satellite data. J. Clim. 10, 165–175 (1997)

    Article  Google Scholar 

  10. Joshi, M.D., Bolzan, J.F., Jezek, K.C., et al.: Classification of snow facies on the Greenland ice sheet using passive microwave and SAR imagery. IEEE Int. Geosci. Remote Sens. Symp. 4, 1852–1854 (1998)

    Google Scholar 

  11. Fettweis, X., Gallee, H., Lefebre, F., et al.: The 1979–2005 Greenland ice sheet melt extent from passive microwave data using an improved version of the melt retrieval XPGR algorithm. Clim. Dyn. 27, 531–541 (2006)

    Article  Google Scholar 

  12. Fettweis, X., van Ypersele, J.P., Gallee, H., et al.: The 1979–2005 Greenland ice sheet melt extent from passive microwave data using an improved version of the melt retrieval XPGR algorithm. Geophys. Res. Lett. 2007(34), L05502 (2007)

    Google Scholar 

  13. McCabe, M.F., Chylek, P., Dubey, M.K.: Detecting ice-sheet melt area over western Greenland using MODIS and AMSR-E data for the summer periods of 2002–2006. Remote Sens. Lett. 2(2), 117–126 (2011)

    Article  Google Scholar 

  14. Lampkin, D.J., Wade, U.: Evaluation of a novel inversion model for surface melt magnitude over the Greenland ice sheet during the 2002 ablation season. Int. J. Remote Sens. 34(19), 6931–6946 (2013)

    Article  Google Scholar 

  15. Mantero, P., Moser, G., Serpico, S.B.: Partially supervised classification of remote sensing images through SVM-based probability density estimation. IEEE Trans. Geosci. Remote Sens. 43(3), 559–570 (2005)

    Article  Google Scholar 

  16. Chi, M., Feng, R., Bruzzone, L.: Classification of hyperspectral remote-sensing data with primal SVM for small-sized training dataset problem. Adv. Space Res. 41(11), 1793–1799 (2008)

    Article  Google Scholar 

  17. Mountrakis, G., Im, J., Ogole, C.: Support vector machines in remote sensing: a review. ISPRS J. Photogramm. Remote Sens. 66, 247–259 (2011)

    Article  Google Scholar 

  18. Roy, A., Singha, J., Devi, S.S., et al.: Impulse noise removal using SVM classification based fuzzy filter from gray scale images. Signal Process. 128, 262–273 (2016)

    Article  Google Scholar 

  19. Steger, C.R., Reijmer, C.H., van den Broeke, M.R.: The modelled liquid water balance of the Greenland Ice Sheet. Cryosphere 11(6), 2507–2526 (2017)

    Article  Google Scholar 

  20. Moustafa, S.E., Rennermalm, A.K., Roman, M.O., et al.: Evaluation of satellite remote sensing albedo retrievals over the ablation area of the southwestern Greenland ice sheet. Remote Sens. Environ. 198, 115–125 (2017)

    Article  Google Scholar 

  21. Wang, D.D., Liang, S.L., He, T., et al.: Surface shortwave net radiation estimation from FengYun-3 MERSI Data. Remote Sens. 7, 6224–6239 (2015)

    Article  Google Scholar 

  22. Weng, F.Z., Zou, X.L., Turk, F.J.: Introduction to the special issue on the Chinese FengYun-3 satellite instrument calibration and applications. IEEE Transactions on Geoscience & Remote Sensing 50(12), 4843–4844 (2012)

    Article  Google Scholar 

  23. Song, H.H., Wang, G.J., Cao, A.J., et al.: Improving the spatial resolution of FY-3 microwave radiation imager via fusion with FY-3/MERSI. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 10(7), 3055–3063 (2017)

    Article  Google Scholar 

  24. Jaramillo, F., Orchard, M., Munoz, C., et al.: On-line estimation of the aerobic phase length for partial nitrification processes in SBR based on features extraction and SVM classification. Chem. Eng. J. 331, 114–123 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Key Research and Development Program of China (Grant No. 2016YFA0600302), and supported by Natural Science Foundation of China (No. 41606209), and supported by the Fujian Provincial Key Laboratory of Photonics Technology, Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, Fujian Normal University, China (JYG1707), and supported by the Fundamental Research Funds for the Henan Provincial Colleges and Universities (2015QNJH16). We thank the Chief Editor of the Journal and the anonymous reviewers for their time and effort, which will significantly improves the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingdong Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Wu, Z. & Li, X. Near-surface snowmelt detection on the Greenland ice sheet from FengYun-3 MWRI data. Cluster Comput 22 (Suppl 4), 8301–8308 (2019). https://doi.org/10.1007/s10586-018-1743-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-018-1743-9

Keywords

Navigation