Skip to main content
Log in

Improved algorithm for parallel mining collaborative frequent itemsets in multiple data streams

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

With the rapid development of the World Wide Web technology, complex and diverse data present explosive growth, so frequent itemset mining plays an essential role. In view of the mining frequent itemsets in multiple data streams by limited computing power of a single processor, an improved algorithm of Parallel Mining Collaborative frequent itemsets in multiple data streams (PMCMD-Stream) was proposed. Firstly, the algorithm compresses the potential and frequent itemsets into CP-Tree only by one-scan and applies increment method to inserting or deleting related branch on CP-Tree, we do not need to repeatedly scanning the databases to generate many candidate frequent itemsets and save the running time. Secondly, this parallelized algorithm can be run in the MapReduce programming environment. Finally, the valuable frequent itemsets, namely global collaborative frequent itemsets, were obtained. Because each candidate frequent itemset is independent, and different candidate frequent itemsets can be processed by multiple computing machines concurrently. The experimental results show that PMCMD-Stream algorithm not only can improve the mining efficiency but also have much better scalability than the existing algorithms, so as to discover the collaborative frequent itemsets from large-scale data streams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gani, A., Siddiqa, A., Shamshirband, S., et al.: A survey on indexing techniques for big data: taxonomy and performance evaluation. Knowl. Inf. Syst. 46(2), 241–284 (2016)

    Article  Google Scholar 

  2. Shamshirb, S., Kalantari, S., Sam, D.Z., et al.: Expert security system in wireless sensor networks based on fuzzy discussion multi-agent systems. Sci. Res. Essays 5(24), 3840–3849 (2010)

    Google Scholar 

  3. Henzinger, M.R., Raghavan, P., Rajagopalan, S.: Computing on data streams. Extern. Mem. Algorithms 50, 107–118 (1998)

    Article  MathSciNet  Google Scholar 

  4. Manku, G.S., Motwani, R.: Approximate frequency counts over data streams. In: Proceedings of the 28th International Conference on Very Large Data Bases. VLDB Endowment, pp. 346–357 (2002)

    Chapter  Google Scholar 

  5. Mozafari, B., Thakkar, H., Zaniolo, C.: Verifying and mining frequent patterns from large windows over data streams. In: IEEE 24th International Conference on: Data Engineering, ICDE 2008. IEEE, pp. 179–188 (2008)

  6. MacBean, N., Peylin, P., Chevallier, F., et al.: Consistent assimilation of multiple data streams in a carbon cycle data assimilation system. Geosci. Model Dev. 9(10), 3569 (2016)

    Article  Google Scholar 

  7. Che-Qing, J.I.N., Wei-Ning, Q., Ao-Ying, Z.: Analysis and management of streaming data: a survey. J. Softw. 8, 008 (2004)

    Google Scholar 

  8. Agrawal, R., Imieliński, T., Swami, A.: Mining association rules between sets of items in large databases. In: ACM sigmod record. ACM, vol. 22(2), pp. 207–216 (1993)

    Article  Google Scholar 

  9. Han, J., Pei, J., Yin, Y., et al.: Mining frequent patterns without candidate generation: a frequent-pattern tree approach. Data Mining Knowl. Discov. 8(1), 53–87 (2004)

    Article  MathSciNet  Google Scholar 

  10. Chaure, TM., Singh, KR.: Frequent itemset mining techniques—a technical review. In: World Conference on Futuristic Trends in Research and Innovation for Social Welfare (Startup Conclave). IEEE, pp. 1–4 (2016)

  11. Yu, J.X., Chong, Z., Lu, H., et al.: False positive or false negative: mining frequent itemsets from high speed transactional data streams. In: Proceedings of the Thirtieth International Conference on Very Large Data Bases-Vol. 30. VLDB Endowment, pp. 204–215 (2004)

  12. Hristidis, V., Valdivia, O., Vlachos, M., et al.: Information discovery across multiple streams. Inf. Sci. 179(19), 3268–3285 (2009)

    Article  Google Scholar 

  13. Yeh, M.Y., Dai, B.R., Chen, M.S.: Clustering over multiple evolving streams by events and correlations. IEEE Trans. Knowl. Data Eng. 19(10), 1349–1362 (2007)

    Article  Google Scholar 

  14. Guo, J., Zhang, P., Tan, J., et al.: Mining frequent patterns across multiple data streams. In: Proceedings of the 20th ACM International Conference on Information and Knowledge Management. ACM, pp. 2325–2328 (2011)

  15. Gunopulos, D., Khardon, R., Mannila, H., et al.: Discovering all most specific sentences. ACM Trans. Database Syst. (TODS) 28(2), 140–174 (2003)

    Article  Google Scholar 

  16. Otey, M.E., Wang, C., Parthasarathy, S., et al.: Mining frequent itemsets in distributed and dynamic databases. In: Third IEEE International Conference on Data Mining, ICDM 2003. IEEE, pp. 617–620 (2003)

  17. Xun, Y., Zhang, J.: A parallel frequent itemsets mining algorithm based on compressed linked list. Icic Express Lett. 9(8), 2313–2318 (2015)

    Google Scholar 

  18. Deng, Z.H., Wang, Z.H., Jiang, J.J.: A new algorithm for fast mining frequent itemsets using N-lists. Sci. China Inf. Sci. 55(9), 2008–2030 (2012)

    Article  MathSciNet  Google Scholar 

  19. Yu, H., Wen, J., Wang, H., et al.: An improved Apriori algorithm based on the Boolean matrix and Hadoop. Procedia Eng. 15, 1827–1831 (2011)

    Article  Google Scholar 

  20. Li, H., Wang, Y., Zhang, D., et al.: Pfp: parallel fp-growth for query recommendation. In: Proceedings of the 2008 ACM Conference on Recommender Systems. ACM, pp. 107–114 (2008)

  21. Saabith, A.L.S., Sundararajan, E., Bakar, A.A.: Parallel implementation of apriori algorithms on the hadoop-mapreduce platform-an evaluation of literature. J. Theor. Appl. Inf. Technol. 85(3), 321 (2016)

    Google Scholar 

  22. Bustio-Martínez, L., Cumplido, R., Hernández-León, R., et al.: On the design of hardware-software architectures for frequent itemsets mining on data streams. J. Intell. Inf. Syst. (2017). https://doi.org/10.1007/s10844-017-0461-8

    Article  Google Scholar 

  23. Xun, Y., Zhang, J., Qin, X.: FiDoop: parallel mining of frequent itemsets MapReduce. IEEE Trans. Sys. Man Cyb. 46(3), 313–325 (2016)

    Article  Google Scholar 

  24. Duong, K.C., Bamha, M., Giacometti, A., et al.: MapFIM: memory aware parallelized frequent itemset mining in very large datasets. In: International Conference on Database and Expert Systems Applications. Springer, Cham, pp. 478–495 (2017)

    Google Scholar 

  25. Bernecker, T., Cheng, R., Cheung, D.W., et al.: Model-based probabilistic frequent itemset mining. Knowl. Inf. Syst. 37(1), 181–217 (2013)

    Article  Google Scholar 

  26. Wang, S., Wang, G.R.: Frequent items query algorithm for uncertain sensing data. Jisuanji Xuebao (Chin. J. Comput.) 36(3), 571–581 (2013)

    Google Scholar 

  27. Li, H.F., Lee, S.Y.: Mining frequent itemsets over data streams using efficient window sliding techniques. Expert Syst. Appl. 36(2), 1466–1477 (2009)

    Article  Google Scholar 

  28. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters. Commun. ACM 51(1), 107–113 (2008)

    Article  Google Scholar 

  29. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: Proceedings of the 20th International Conference very Large Data bases, VLDB, vol. 1215, pp. 487–499 (1994)

  30. Baccarelli, E., Cordeschi, N., Mei, A., et al.: Energy-efficient dynamic traffic offloading and reconfiguration of networked data centers for big data stream mobile computing: review, challenges, and a case study. IEEE Netw. 30(2), 54–61 (2016)

    Article  Google Scholar 

  31. Wu, G., Zhang, H., Qiu, M., et al.: A decentralized approach for mining event correlations in distributed system monitoring. J. Parallel Distrib. Comput. 73(3), 330–340 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the following grants: National Natural Science Foundation of China (No. 61572301, 61772321), the Innovation Fundation of Science and Technology Development Center of Ministry of Education and New H3C Group(2017A15047), Natural Science Foundation of Shandong Province (No. ZR2013FM008, and No. ZR2016FP07), the Open Research Fund from Shandong provincial Key Laboratory of Computer Network (No. SDKLCN-2016-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fang’ai Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, F., Wang, Q. & Wang, X. Improved algorithm for parallel mining collaborative frequent itemsets in multiple data streams. Cluster Comput 22 (Suppl 3), 6133–6141 (2019). https://doi.org/10.1007/s10586-018-1859-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-018-1859-y

Keywords

Navigation