Skip to main content
Log in

Local convolutional features and metric learning for SAR image registration

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

The conventional synthetic aperture radar (SAR) image registration focuses on designing diverse hand-crafted features and distance metrics. It is still challenging to obtain accurate feature correspondence when influenced by speckle noise and geometric distortion. This paper proposes local convolutional neural network (CNN) features based method to solve the keypoint matching problem, whose contributions are threefold. (1) a feature descriptor based on local convolutional features of image patches (LCFs-P) is deployed to extract more discriminative features than the conventional CNNs. (2) A new feature correspondence scheme based on metric learning is proposed to boost the feature matching performance. (3) A local geometric similarity method is employed to remove the mismatches of the tentative matches. The experimental results on the real SAR dataset and Middlebury dataset demonstrate that the proposed model outperforms the existing state-of-the-art methods in terms of matching accuracy and efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Sjanic, Z., Gustafsson, F.: Simultaneous navigation and synthetic aperture radar focusing. IEEE Trans. Aerosp. Electron. Syst. 51(2), 1253–1266 (2015)

    Article  Google Scholar 

  2. Jia, L., Li, M., Wu, Y., Zhang, P., Liu, G., Chen, H., An, L.: SAR image change detection based on iterative label-information composite kernel supervised by anisotropic texture. IEEE Trans. Geosci. Remote Sens. 53(7), 3960–3973 (2015)

    Article  Google Scholar 

  3. Zhu, H., Ma, W., Hou, B., Jiao, L.: SAR image registration based on multifeature detection and arborescence network matching. IEEE Geosci. Remote Sens. Lett. 13(5), 706–710 (2016)

    Article  Google Scholar 

  4. Brown, L.G.: A survey of image registration techniques. ACM Comput. Surv. (CSUR) 24(4), 325–376 (1992)

    Article  Google Scholar 

  5. Fan, B., Huo, C., Pan, C., Kong, Q.: Registration of optical and SAR satellite images by exploring the spatial relationship of the improved SIFT. IEEE Geosci. Remote Sens. Lett. 10(4), 657–661 (2013)

    Article  Google Scholar 

  6. Fan, J., Wu, Y., Wang, F., Zhang, P., Li, M.: New point matching algorithm using sparse representation of image patch feature for SAR image registration. IEEE Trans. Geosci. Remote Sens. 55(3), 1498–1510 (2017)

    Article  Google Scholar 

  7. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)

    Article  Google Scholar 

  8. Schwind, P., Suri, S., Reinartz, P., Siebert, A.: Applicability of the SIFT operator to geometric SAR image registration. Int. J. Remote Sens. 31(8), 1959–1980 (2010)

    Article  Google Scholar 

  9. Chen, T., Chen, L.: A union matching method for SAR images based on SIFT and edge strength. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 7(12), 4897–4906 (2014)

    Article  Google Scholar 

  10. Wang, F., You, H., Fu, X.: Adapted anisotropic Gaussian SIFT matching strategy for SAR registration. IEEE Geosci. Remote Sens. Lett. 12(1), 160–164 (2015)

    Article  Google Scholar 

  11. Wang, S., You, H., Fu, K.: BFSIFT: a novel method to find feature matches for SAR image registration. IEEE Geosci. Remote Sens. Lett. 9(4), 649–653 (2012)

    Article  Google Scholar 

  12. Fan, J., Wu, Y., Wang, F., Zhang, Q., Liao, G., Li, M.: SAR image registration using phase congruency and nonlinear diffusion-based SIFT. IEEE Geosci. Remote Sens. Lett. 12(3), 562–566 (2015)

    Article  Google Scholar 

  13. Dellinger, F., Delon, J., Gousseau, Y., Michel, J., Tupin, F.: SAR-SIFT: a SIFT-like algorithm for SAR images. IEEE Trans. Geosci. Remote Sens. 53(1), 453–466 (2015)

    Article  Google Scholar 

  14. Harris, C., Stephens, M.: A combined corner and edge detector. Alvey Vis. Conf. 15(50), 10–5244 (1988)

    Google Scholar 

  15. Bentoutou, Y., Taleb, N., Kpalma, K., Ronsin, J.: An automatic image registration for applications in remote sensing. IEEE Trans. Geosci. Remote Sens. 43(9), 2127–2137 (2005)

    Article  Google Scholar 

  16. Fan, J., Wu, Y., Li, M., Zhang, Q.: SAR image registration using multiscale image patch features with sparse representation. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 10(4), 1483–1493 (2016)

    Article  Google Scholar 

  17. Fischer, P., Dosovitskiy, A., Brox, T.: Descriptor matching with convolutional neural networks: a comparison to sift. arXiv preprint arXiv:1405.5769

  18. Zagoruyko, S., Komodakis, N.: Learning to compare image patches via convolutional neural networks. In: IEEE Conference on Computer Vision and Pattern Recognition, pp 4353–4361 (2015)

  19. Han, X., Leung, T., Jia, Y., Sukthankar, R., Berg, A.C.: MatchNet: Unifying feature and metric learning for patch-based matching. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 3279–3286 (2015)

  20. Simo-Serra, E., Trulls, E., Ferraz, L., Kokkinos, I., Fua, P., Moreno-Noguer, F.: Discriminative learning of deep convolutional feature point descriptors. In: IEEE International Conference on Computer Vision, pp. 118–126 (2016)

  21. Weinberger, K.Q., Saul, L.K.: Distance metric learning for large margin nearest neighbor classification. J. Mach. Learn. Res. 10, 207–244 (2009)

    MATH  Google Scholar 

  22. Xing, E.P., Ng, A.Y., Jordan, M.I., Russell, S.J.: Distance metric learning, with application to clustering with side-information. In: International Conference on Neural Information Processing Systems. MIT Press, pp 521–528 (2002)

  23. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 726–740 (1981)

    Article  MathSciNet  Google Scholar 

  24. Torr, P.H.S., Murray, D.W.: The development and comparison of robust methods for estimating the fundamental matrix. Int. J. Comput. Vision 24(3), 271–300 (1997)

    Article  Google Scholar 

  25. Scharstein, D., Szeliski, R.: A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. Int. J. Comput. Vision 47(1–3), 7–42 (2002)

    Article  Google Scholar 

  26. Scharstein, D., Szeliski, R.: High-accuracy stereo depth maps using structured light. In: 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Proceedings, pp I-195–I-202. IEEE (2003)

  27. Scharstein, D., Pal, C.: Learning conditional random fields for stereo. In: IEEE Conference on Computer Vision and Pattern Recognition, pp 1–8 (2007)

  28. Hirschmuller, H., Scharstein, D.: Evaluation of cost functions for stereo matching. In: IEEE Conference on Computer Vision and Pattern Recognition, pp 1–8 (2007)

  29. Scharstein, D., Hirschmüller, H., Kitajima, Y., Krathwohl, G., Nešić, N., Wang, X., Westling, P.: High-resolution stereo datasets with subpixel-accurate ground truth. In: German Conference on Pattern Recognition, pp 31–42 . Springer (2014)

  30. Shelhamer, E., Long, J., Darrell, T.: Fully convolutional networks for semantic segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(4), 640–651 (2017)

    Article  Google Scholar 

  31. Cover, T., Hart, P.: Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 13(1), 21–27 (1967)

    Article  Google Scholar 

  32. Li, D., Zhou, H., Lam, K.M.: High-resolution face verification using pore-scale facial features. IEEE Trans. Image Process 24(8), 2317–2327 (2015)

    Article  MathSciNet  Google Scholar 

  33. Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. IEEE Trans. Pattern Anal. Mach. Intell. 27(10), 1615–1630 (2005)

    Article  Google Scholar 

  34. Gonçalves, H., Gonçalves, J.A., Corte-Real, L.: Measures for an objective evaluation of the geometric correction process quality. IEEE Geosci. Remote Sens. Lett. 6(2), 292–296 (2009)

    Article  Google Scholar 

  35. Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (SURF). Comput. Vis. Image Underst. 110(3), 346–359 (2008)

    Article  Google Scholar 

  36. Zhang, B., Gao, Y., Zhao, S., Liu, J.: Local derivative pattern versus local binary pattern: face recognition with high-order local pattern descriptor. IEEE Trans. Image Process. 19(2), 533 (2010)

    Article  MathSciNet  Google Scholar 

  37. Zhang, B., Perina, A., Li, Z., Murino, V., Liu, J., Ji, R.: Bounding multiple Gaussians uncertainty with application to object tracking. Int. J. Comput. Vis. 118(3), 364–379 (2016)

    Article  MathSciNet  Google Scholar 

  38. Zhang, B., Yang, Y., Chen, C., Yang, L., Han, J., Shao, L.: Action recognition using 3D histograms of texture and a multi-class boosting classifier. IEEE Trans. Image Process. 26(10), 4648–4660 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiangliang Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Q., Xiao, J., Hu, X. et al. Local convolutional features and metric learning for SAR image registration. Cluster Comput 22 (Suppl 2), 3103–3114 (2019). https://doi.org/10.1007/s10586-018-1946-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-018-1946-0

Keywords

Navigation