Skip to main content
Log in

Importance-based entropy measures of complex networks’ robustness to attacks

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

Intentional attacks usually cause greater damage than random failures to complex networks, so it is important to study the networks’ resilience to attacks. Although various entropy measures have been available to measure the heterogeneity of complex networks to analyze their properties, they can not distinguish the difference of robustness between the scale-free networks and random networks. Hence, we propose a new entropy measurement base on the node importance to measure complex networks’ robustness to attacks. The experimental analysis shows that the importance-based entropy measure describes the robustness properties of complex networks precisely which are in consistent with the well-known conclusion and it distinguishes the difference between the scale-free networks and random networks more obviously in the view of robustness than the existing entropy measures in the view of heterogeneity. We conclude that the entropy measurement based on the node importance is an effective measure of network’s resilience to intentional attacks and heterogeneity is not in direct relationship with the network’s resilience to errors and attacks for any network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Notes

  1. If we do not mention, the NNIE represents the NNIE based on PDB in the following text of this part.

References

  1. Pastor-Satorras, R., Castellano, C., Mieghem, P.V., et al.: Epidemic processes in complex networks. Rev. Mod. Phys. 87(3), 925 (2015)

    Google Scholar 

  2. Liu, Y.Y., Barabási, A.L.: Control principles of complex systems. Rev. Mod. Phys. 88(3), 035006 (2016)

    Google Scholar 

  3. Rodrigues, F.A., Peron, T.K.D., Ji, P., et al.: The Kuramoto model in complex networks. Phys. Rep. 610, 1–98 (2016)

    Google Scholar 

  4. Albert, R., Jeong, H., Barabási, A.L.: Error and attack tolerance of complex networks. Nature 406(6794), 378–382 (2000)

    Google Scholar 

  5. De, D.M., Nicosia, V., Arenas, A., et al.: Structural reducibility of multilayer networks. Nat. Commun. 6, 6864 (2015)

    Google Scholar 

  6. Gao, J., Barzel, B., Barabási, A.: Universal resilience patterns in complex networks. Nature 530(7590), 307 (2016)

    Google Scholar 

  7. Kim, Y., Chen, Y.S., Linderman, K.: Supply network disruption and resilience: a network structural perspective. J. Oper. Manag. 33–34, 43–59 (2015)

    Google Scholar 

  8. Majdandzic, A., Podobnik, B., Buldyrev, S.V., et al.: Spontaneous recovery in dynamical networks. Nat. Phys. 10(1), 34–38 (2014)

    Google Scholar 

  9. Solé, R.V., Valverde, S.: Information theory of complex networks: on evolution and architectural constraints. Lect. Notes Phys. 650, 189–207 (2004)

    Google Scholar 

  10. Wang, B., Tang, H., Guo, C., et al.: Entropy optimization of scale-free networks’ robustness to random failures. Physica A 363(2), 591–596 (2006)

    Google Scholar 

  11. Wu, J., Tan, Y.J., Deng, H.Z., et al.: Heterogeneity of scale-free networks. Syst. Eng. 27(5), 101–105 (2007)

    Google Scholar 

  12. Xiao, Y.H., Wu, W.T., Wang, H., et al.: Symmetry-based structure entropy of complex networks. Physica A 387(11), 2611–2619 (2008)

    Google Scholar 

  13. Wu, L., Tan, Q., Zhang, Y.: Network connectivity entropy and its application on network connectivity reliability. Physica A 392(21), 5536–5541 (2013)

    Google Scholar 

  14. Zhang, Q., Li, M., Deng, Y.: A new structure entropy of complex networks based on nonextensive statistical mechanics. Int. J. Mod. Phys. C 27(10), 440–455 (2016)

    Google Scholar 

  15. Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in networks. Phys. Rev. E 69(2), 026113 (2004)

    Google Scholar 

  16. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)

    Google Scholar 

  17. Bollobás, B.: Random Graphs. Cambridge University Press, Cambridge (2001)

    Google Scholar 

  18. Liu, J.G., Wang, Z.T., Dang, Y.Z.: Optimization of robustness of scale-free network to random and targeted attacks. Mod. Phys. Lett. B 19(16), 785–792 (2005)

    Google Scholar 

  19. Batagelj, V., Mrvar, A.: Pajek—analysis and visualization of large networks. Lect. Notes Comput. Sci. 2265, 77–103 (2004)

    Google Scholar 

  20. Batagelj, V.: Ragusan families marriage networks’. In: Ferligoj, A, Kramberger, A. (eds.) Developments in Data Analysis, pp. 217–228 (1996)

  21. Imrich, W., Klavžar, S.: Product Graphs: Structure and Recognition. Wiley, New York (2000)

    Google Scholar 

  22. North American Transportation Atlas Data. http://vlado.fmf.uni-lj.si/pub/networks/data/

  23. Java Compile Time Dependency Graph. http://vlado.fmf.uni-lj.si/pub/networks/data/GD/GD.htm

  24. Lusseau, D., Schneider, K., Boisseau, O.J., et al.: The bottlenose dolphin community of Doubtful Sound features a large proportion of long-lasting associations. Behav. Ecol. Sociobiol. 54(4), 396–405 (2003)

    Google Scholar 

  25. Orthogonal graph-drawing. http://vlado.fmf.uni-lj.si/pub/networks/data/GD/GD.htm

  26. Theorethical graph. http://vlado.fmf.uni-lj.si/pub/networks/data/GD/GD.htm

Download references

Acknowledgements

This work was supported in part by a grant from National Natural Science Foundation of China (Grant Nos. 61601114, 61602113, 61571110) and National High Technology Research and Development Program of China (863 Program) under Project No. 2013AA014001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Y., Hu, A. & Huang, J. Importance-based entropy measures of complex networks’ robustness to attacks. Cluster Comput 22 (Suppl 2), 3981–3988 (2019). https://doi.org/10.1007/s10586-018-2580-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-018-2580-6

Keywords

Navigation