Skip to main content

Advertisement

Log in

A novel aerodynamic parameter estimation algorithm via sigma point Rauch–Tung–Striebel smoother using expectation maximization

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

We consider the problem of aerodynamic parameter estimation for aircraft dynamics modeled by a state space model where the statistic information of both the process and measurement noises are missing. To deal with the missing statistics, we propose in this work a new approach in which an augmented sigma point Rauch–Tung–Striebel (RTS) Kalman smoother is integrated with the expectation maximization (EM) algorithm. We define a new state vector by combining the original states and the unknown aerodynamic parameters. In addition, we impose a Gaussian random walk model for the unknown aerodynamic parameters and then build the extended state space model for the augmented RTS Kalman smoother. The expectation terms in the EM algorithm are approximated by the sigma point rule which is also applied in the augmented RTS Kalman smoother. Moreover, the non-convex optimization problem involved in the EM is solved in analytical forms rather than in numerical approaches. A comparative study of identifying the aerodynamic parameters of the flight test platform HFB-320 shows that the proposed approach achieves a substantial performance improvement over the existing ones, especially in terms of the convergence rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Jategaonkar, R.V.: Flight Vehicle System Identification: A Time Domain Methodology, vol. 216. AIAA, Reston, VA, USA (2006)

    Book  Google Scholar 

  2. Hamel, P.G., Jategaonkar, R.V.: Evolution of flight vehicle system identification. J. Aircr. 33(1), 9–28 (1996)

    Article  Google Scholar 

  3. Owens, D.Bruce, et al.: Overview of dynamic test techniques for flight dynamics research at NASA LaRC. AIAA Paper 3146, 5–8 (2006)

    Google Scholar 

  4. Iliff, K.W.: Parameter estimation for flight vehicles. J. Guid. Control Dyn. 12(5), 609–622 (1989)

    Article  Google Scholar 

  5. Kutluay, U., Gokmen, M., Bulent, P.: An application of equation error method to aerodynamic model identification and parameter estimation of a gliding flight vehicle. In: AIAA Atmospheric Flight Mechanics Conference (2009)

  6. Rohlfs, M.: Identification of non-linear derivative models from Bo 105 flight test data. Aeronaut. J. 102(1011), 1–8 (1998)

    Google Scholar 

  7. Li, C.W., Zou, X.H.: Maximum likelihood method based on interior point algorithm for aircraft parameter identification. J. Aircr. 42(5), 1355–1358 (2005)

    Article  Google Scholar 

  8. Paris, A.C., Alaverdi, O.: Nonlinear aerodynamic model extraction from flight-test data for the S-3B viking. J. Aircr. 42(1), 26–32 (2005)

    Article  Google Scholar 

  9. Jategaonkar, R., Plaetschke, E.: Estimation of Aircraft Parameters Using Filter Error Methods and Extended Kalman Filter. Dt. Forschungs-u. VersuchsanstaltfürLuft-u, Raumfahrt (1988)

    Google Scholar 

  10. Garcia-Velo, J., Walker, B.: Aerodynamic parameter estimation for high-performance aircraft using extended Kalman filter. In: AIAA, No. 95–3500 (1995)

  11. Chowdhary, Girish, Ravindra, J.: Aerodynamic parameter estimation from flight data applying extended and unscented Kalman filter. Aerosp. Sci. Technol. 14(2), 106–117 (2010)

    Article  Google Scholar 

  12. Smith, P.J: Joint state and parameter estimation using data assimilation with application to morphodynamic modelling. Ph.D. Thesis, University of Reading (2010)

  13. Yokoyama, N.: Parameter estimation of aircraft dynamics via unscented smoother with expectation-maximization algorithm. J. Guid. Control Dyn. 34(2), 426–436 (2011)

    Article  Google Scholar 

  14. Santitissadeekorn, N., Chris, J.: Two-state filtering for joint state-parameter estimation (2014). arXiv:1403.5989

  15. West, M., Liu, J.: Sequential Monte Carlo in Practices, pp. 197–223. Springer, New York (2001)

    Google Scholar 

  16. Julier, S.J., Uhlmann, J.K.: Unscented filtering and nonlinear estimation. Proc. IEEE 92(3), 401–422 (2004)

    Article  Google Scholar 

  17. Ito, K., Xiong, K.: Gaussian filters for nonlinear filtering problems. IEEE Trans. Autom. Control 45(5), 910–927 (2000)

    Article  MathSciNet  Google Scholar 

  18. Wang, H., Zhang, W., Zuo, J., Wang, H.: Generalized cubature quadrature Kalman filters: derivations and extensions. J. Syst. Eng. Electron. 28(3), 556–562 (2017)

    Google Scholar 

  19. Bell, B.M., James, V.B., Pillonetto, G.: An inequality constrained nonlinear Kalman-Bucy smoother by interior point likelihood maximization. Automatica 45(1), 25–33 (2009)

    Article  MathSciNet  Google Scholar 

  20. Aravkin, A.Y., et al.: An \(\ell_{1}\)-Laplace robust Kalman smoother. IEEE Trans. Autom. Control 56(12), 2898–2911 (2011)

  21. AravkinA, Y., James, V.B., Pillonetto, G.: Optimization viewpoint on Kalman smoothing with applications to robust and sparse estimation. In: Compressed Sensing & Sparse Filtering, pp. 237–280. Springer, Berlin (2014)

    Google Scholar 

  22. Fraser, D., Potter, J.: The optimum linear smoother as a combination of two optimum linear filters. IEEE Trans. Autom. Control 14(4), 387–390 (1969)

    Article  MathSciNet  Google Scholar 

  23. Ye, J., Ding, Y.: Controllable keyword search scheme supporting multiple users. Future Gener. Comput. Syst. 81, 433–442 (2018)

    Article  Google Scholar 

  24. Gibbs, R.G.: Square root modified Bryson-Frazier smoother. IEEE Trans. Autom. Control 56(2), 542–546 (2011)

    Article  MathSciNet  Google Scholar 

  25. Rauch, H.E., Striebel, C.T., Tung, F.: Maximum likelihood estimates of linear dynamic systems. AIAA J. 3(8), 1445–1450 (1965)

    Article  MathSciNet  Google Scholar 

  26. Särkkä, S.: Bayesian Filtering and Smoothing, vol. 3. Cambridge University Press, Cambridge (2013)

    Book  Google Scholar 

  27. Sage, A.P., Husa, G.W.: Adaptive filtering with unknown prior statistics. Jt. Autom. Control Conf. 7, 760–769 (1969)

    Google Scholar 

  28. Myers, K., Tapley, B.: Adaptive sequential estimation with unknown noise statistics. IEEE Trans. Autom. Control 21(4), 520–523 (1976)

    Article  Google Scholar 

  29. Schön, T.B., Wills, A., Ninness, B.: System identification of nonlinear state-space models. Automatica 47(1), 39–49 (2011)

    Article  MathSciNet  Google Scholar 

  30. Arasaratnam, I., Haykin, S., Elliott, R.J.: Discrete-time nonlinear filtering algorithms using Gauss-Hermite quadrature. Process. IEEE 95(5), 953–977 (2007)

    Article  Google Scholar 

  31. Bhaumik, S.: Cubature quadrature Kalman filter. IET Signal Process. 7(7), 533–541 (2013)

    Article  MathSciNet  Google Scholar 

  32. Jia, B., Xin, M., Cheng, Y.: High-degree cubature Kalman filter. Automatica 49(2), 510–518 (2013)

    Article  MathSciNet  Google Scholar 

  33. Majeed, M., Narayan, Kar I.: Aerodynamic parameter estimation using adaptive unscented Kalman filter. Aircr. Eng. Aerosp. Technol. 85(4), 267–279 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 11472222 and 61473227), the National Science Foundation of Shaanxi Province of China (Grant No. 2015JM6304), the Aviation Science Foundation of China (Grant No. 20151353018), and the Aerospace Technology Support Fund of China (Grant No. 2014-HT-XGD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Wang, H., Liu, Y. et al. A novel aerodynamic parameter estimation algorithm via sigma point Rauch–Tung–Striebel smoother using expectation maximization. Cluster Comput 22 (Suppl 3), 6795–6806 (2019). https://doi.org/10.1007/s10586-018-2652-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-018-2652-7

Keywords

Navigation