Skip to main content
Log in

The limitations in the state-of-the-art counter-measures against the security threats in H-IoT

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

Internet of Things (IoT) technology is anticipated to pave the way for groundbreaking applications in a number of areas of current healthcare systems. Given the significant number of connected medical devices, the vital data generated by the patient is under several security threats. Selective Forwarding (SF) and Wormhole (WH) attacks are two critical threats that cause information deficit in the network. The SF attack drops critical data packets at compromised nodes while the WH attack creates fallacious routing tables due to the introduction of malicious routes in the network. In this paper, we focus on the security aspects of Healthcare-IoT and review the proposed counter-measures against the SF and WH attacks. We weigh the recently postulated counter-measures based on their significance and identify their limitations. Additionally, we propose a blockchain-based cryptographic framework for mitigating SF and WH attacks in H-IoT. We explore future research directions in mitigating these threats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Alagar, V., Alsaig, A., Ormandjiva, O., Wan, K.: Context-based security and privacy for healthcare IoT. In: 2018 IEEE International Conference on Smart Internet of Things (SmartIoT), Xi’an, pp. 122–128 (2018). https://doi.org/10.1109/SmartIoT.2018.00-14

  2. Ramli, S.N., Ahmad, R.: Surveying the wireless body area network in the realm of wireless communication. In: 2011 7th International Conference Information Assurance and Security (IAS), Melaka, pp. 58–61 (2011). https://doi.org/10.1109/ISIAS.2011.6122845

  3. Suresh, P., Daniel, J.V., Parthasarathy, V., Aswathy, R.H.: A state of the art review on the Internet of Things (IoT) History, Technology and fields of deployment. In: 2014 International Conference on Science Engineering and Management (ICSEMR), Chennai, India, pp. 1–8 (2014). https://doi.org/10.1109/ICSEMR.2014.7043637

  4. Qadri, Y.A., Musaddiq, A., Kim, D.W., Kim, S.W.: An overview of selective forwarding and wormhole attacks in healthcare IoT. In: Asia Pacific Conference on Information Communication Technology (APCICT-2018), Daegu, Korea (2018)

  5. Naik, M.R.K., Samundiswary, P.: Wireless body area network security issues-survey. In: 2016 International Conference on Control, Instrumentation, Communication and Computational Technologies (ICCICCT), Kumaracoil, India, pp. 190–194 (2016). https://doi.org/10.1109/ICCICCT.2016.7987943

  6. He, D., Zeadally, S., Kumar, N., Lee, J.H.: Anonymous authentication for wireless body area networks with provable security. IEEE Syst. J. 11(4), 1–12 (2017). https://doi.org/10.1109/JSYST.2016.2544805

    Article  Google Scholar 

  7. Lin, Y.-J., Chen, H.-S., Su, M.-J.: A cloud based bluetooth low energy tracking system for dementia patients. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), Hakodate, pp. 88–89 (2015). https://doi.org/10.1109/ICMU.2015.7061043

  8. IEEE Standard for Low-Rate Wireless Networks. IEEE Std 802.15.4-2015 (Revision of IEEE Std 802.15.4-2011), pp. 1–709, (2016). https://doi.org/10.1109/IEEESTD.2016.7460875

  9. Ali, R., Kim, S.W., Kim, B., Park, Y.: Design of MAC layer resource allocation schemes for IEEE 802.11ax: future directions. IETE Tech. Rev. 35(1), 28–52 (2018). https://doi.org/10.1080/02564602.2016.1242387

    Article  Google Scholar 

  10. He, S., Cheng, B., Wang, H., Huang, Y., Chen, J.: Proactive personalized services through fog-cloud computing in large-scale iot-based healthcare application. China Commun. 14(11), 1–16 (2017). https://doi.org/10.1109/CC.2017.8233646

    Article  Google Scholar 

  11. Ridhawi, I.A., Aloqaily, M., Kotb, Y., Jararweh, Y.: A profitable and energy-efficient cooperative fog solution for IoT services. In: IEEE Transactions on Industrial Informatics (Early Access) (2019). https://doi.org/10.1109/TII.2019.2922699

  12. Buyukakkaslar, M.T., Erturk, M.A., Aydin, M.A., Vollero, L.: LoRaWAN as an e-health communication technology. In: 2017 IEEE 41st Annual Computer Software and Applications Conference (COMPSAC), Turin, pp. 310–313 (2017). https://doi.org/10.1109/COMPSAC.2017.162

  13. Lavric, A., Petrariu, A.I., Popa, V.: Long range sigfox communication protocol scalability analysis under large-scale, high-density conditions. IEEE Access 7, 35816–35825 (2019). https://doi.org/10.1109/ACCESS.2019.2903157

    Article  Google Scholar 

  14. Anand, S, Routray, S.K.: Issues and challenges in healthcare narrowband IoT. In: 2017 international conference on inventive communication and computational technologies (ICICCT), Coimbatore, pp. 486–489 (2017). https://doi.org/10.1109/ICICCT.2017.7975247

  15. Baker, S.B., Xiang, W., Atkinson, I.: Internet of things for smart healthcare: technologies, challenges, and opportunities. IEEE Access 5, 26521–26543 (2017). https://doi.org/10.1109/ACCESS.2017.2775180

    Article  Google Scholar 

  16. Zafar, S., Jangsher, S., Bouachir, O., Aloqaily, M., Othman, J.B.: QoS enhancement with deep learning-based interference prediction in mobile IoT. Comput. Commun. 148, 86–97 (2019). https://doi.org/10.1016/j.comcom.2019.09.010

    Article  Google Scholar 

  17. Firouzi, F., Farahani, B., Ibrahim, M., Chakrabarty, K.: From EDA to IoT eHealth: promise, challenges, and solutions. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 37(12), 1–16 (2018). https://doi.org/10.1109/TCAD.2018.2801227

    Article  Google Scholar 

  18. Faheem, M., Gungor, V.C.: Capacity and spectrum-aware communication framework for wireless sensor network-based smart grid applications. Comput. Stand. Interfaces 53, 48–58 (2017). https://doi.org/10.1016/j.csi.2017.03.003

    Article  Google Scholar 

  19. Faheem, M., Butt, R.A, Raza, B, Ashraf, M.W, Begum, S, Ngadi, M.A, Gungor, V.C: Bio-inspired routing protocol for WSN-based smart grid applications in the context of Industry 4.0. In: Transactions on Emerging Telecommunications Technologies (2018). https://doi.org/10.1002/ett.3503

  20. Faheem, M., Gungor, V.C.: Energy efficient and QoS-aware routing protocol for wireless sensor network-based smart grid applications in the context of industry 4.0. Appl. Soft Comput. 68, 910–922 (2018). https://doi.org/10.1016/j.asoc.2017.07.045

    Article  Google Scholar 

  21. Faheem, M., Abbas, M.Z., Tuna, G., Gungor, V.C.: EDHRP: Energy efficient event driven hybrid routing protocol for densely deployed wireless sensor networks. J. Netw. Comput. Appl. 58, 309–326 (2015). https://doi.org/10.1016/j.jnca.2015.08.002

    Article  Google Scholar 

  22. Al-Turjman, F., Ever, E., Zahmatkesh, H.: Internet of nano-things (IoNT) & WBAN. In: Al-Turjman, F. (ed.) Internet of Nano-Things and Wireless Body Area Networks (WBAN). CRC Press, Baco Raton (2019)

    Chapter  Google Scholar 

  23. Topel, S.D., Al-Turjman, F.: Nanosensors for the internet of nano-things (IoNT): an overview. In: Al-Turjman, F. (ed.) Internet of Nano-Things and Wireless Body Area Networks (WBAN). CRC Press, Boca Raton (2019)

    Google Scholar 

  24. Balasubramanian, V., Zaman, F., Aloqaily, M., Ridhawi, I.A., Jararweh, Y., Salameh, H.B.: A mobility management architecture for seamless delivery of 5G-IoT services. In: 2019 IEEE International Conference on Communications (ICC 2019), Shanghai, China, pp. 1–7 (2019). https://doi.org/10.1109/ICC.2019.8761658

  25. Tomić, I., McCann, J.A.: A survey of potential security issues in existing wireless sensor network protocols. IEEE Internet Things J. 4(6), 1910–1923 (2017). https://doi.org/10.1109/JIOT.2017.2749883

    Article  Google Scholar 

  26. Zheng, Z., Xie, S., Dai, H.-N., Wang, H.: Blockchain challenges and opportunities: a survey. Int. J. Web Grid Serv. 14, 352–375 (2016). https://doi.org/10.1504/ijwgs.2018.10016848

    Article  Google Scholar 

  27. Dwivedi, A.D., Srivastava, G., Dhar, S., Singh, R.: A decentralized privacy-preserving healthcare blockchain for IoT. Sensors 19(2), 326 (2019). https://doi.org/10.3390/s19020326

    Article  Google Scholar 

  28. Salah, K., Rehman, M.H.U., Nizamuddin, N., Al-Fuqaha, A.: Blockchain for AI: review and open research challenges. IEEE Access 7, 10127–10149 (2019). https://doi.org/10.1109/ACCESS.2018.2890507

    Article  Google Scholar 

  29. Salleh, A., Mamat, K., Darus, M.Y.: Integration of wireless sensor network and web of things: security perspective. In: 2017 IEEE 8th Control and System Graduate Research Colloquium (ICSGRC), Shah Alam, Malaysia, pp. 138–143 (2017). https://doi.org/10.1109/ICSGRC.2017.8070583

  30. Goyal, S., Bhatia, T., Verma, A.K.: Wormhole and Sybil attack in WSN: a review. In: 2015 2nd International Conference on Computing for Sustainable Global Development (INDIACom), New Delhi, India, pp. 1463–1468 (2015)

  31. Prabhakar, A., Anjali, T.: Mitigating selective Gray Hole Attack in wireless multi-hop network. In: 2017 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET), Chennai, India, pp. 1223–1227 (2017). https://doi.org/10.1109/WiSPNET.2017.8299958

  32. Khabbazian, M., Mercier, H., Bhargava, V.K.: Severity analysis and countermeasure for the wormhole attack in wireless ad hoc networks. IEEE Trans. Wireless Commun. 8(2), 736–745 (2009). https://doi.org/10.1109/TWC.2009.070536

    Article  Google Scholar 

  33. Yu, B., Xiao, B.: Detecting selective forwarding attacks in wireless sensor networks. In: 20th International Parallel and Distributed Processing Symposium (IPDPS), Rhodes Island, Greece (2006). https://doi.org/10.1109/IPDPS.2006.1639675

  34. Liu, A., Dong, M., Ota, K., Long, J.: PHACK: an efficient scheme for selective forwarding attack detection in WSNs. Sensors 15(12), 30942–30963 (2015). https://doi.org/10.3390/s151229835

    Article  Google Scholar 

  35. Mathur, A., Newe, T., Rao, M.: Healthcare WSN: cluster elections and selective forwarding defense. In: NGMAST 9th International Conference on Next Generation Mobile Applications, Services and Technologies, Cambridge, UK, pp. 341–346 (2015). https://doi.org/10.1109/NGMAST.2015.14

  36. Ren, J., Zhang, Y., Zhang, K., Shen, X.: Adaptive and channel-aware detection of selective forwarding attacks in wireless sensor networks. IEEE Trans. Wireless Commun. 15(5), 3718–3731 (2016). https://doi.org/10.1109/TWC.2016.2526601

    Article  Google Scholar 

  37. Gara, F., Saad, L.B., Ayed, R.B.: An intrusion detection system for selective forwarding attack in IPv6-based mobile WSNs. In: 2017 13th International Wireless Communications and Mobile Computing Conference (IWCMC), Valencia, Spain, pp. 276–281 (2017). https://doi.org/10.1109/IWCMC.2017.7986299

  38. Ioannou, C., Vassiliou, V., Sergiou, C.: An intrusion detection system for wireless sensor networks. In: 2017 24th International Conference on Telecommunications (ICT), Limassol, Cyprus, pp. 1–5 (2017). https://doi.org/10.1109/ICT.2017.7998271

  39. Dorri, A.: An EDRI-based approach for detecting and eliminating cooperative black hole nodes in MANET. Springer Wirel. Netw. 23(6), 1767–1778 (2017). https://doi.org/10.1007/s11276-016-1251-x

    Article  Google Scholar 

  40. Pu, C., Lim, S.: A light-weight countermeasure to forwarding misbehavior in wireless sensor networks: design, analysis, and evaluation. IEEE Syst. J. 12(1), 1–9 (2018). https://doi.org/10.1109/JSYST.2016.2535730

    Article  Google Scholar 

  41. Mehetre, D.C., Roslin, S.E., Wagh, S.J.: Detection and prevention of black hole and selective forwarding attack in clustered wsn with active trust. Clust. Comput. 22, 1313–1328 (2018). https://doi.org/10.1007/s10586-017-1622-9

    Article  Google Scholar 

  42. Modirkhazeni, A., Aghamahamoodi, S., Modirkhazeni, A., Niknejad, N.: Distributed approach to mitigate wormhole attack in wireless sensor network. In: 7th International Conference on Networked Computing, Gyeongsanbuk-do, Korea, pp. 122–128 v

  43. Qazi, S., Raad, R., Mu, Y., Susilo, W.: Securing DSR against wormhole attacks in multi-rate ad hoc networks. J. Netw. Comput. Appl. 36(2), 582–592 (2013). https://doi.org/10.1016/j.jnca.2012.12.019

    Article  Google Scholar 

  44. Bendjima, M., Feham, M.: Wormhole attack detection in wireless sensor networks. In: 2016 SAI Computing Conference (SAI), London, UK, pp. 1319–1326 (2016). https://doi.org/10.1109/SAI.2016.7556151

  45. Sharma, M.K., Joshi, B.K.: A mitigation technique for high transmission power based wormhole attack in wireless sensor networks. In: 2016 International Conference on ICT in Business Industry & Government (ICTBIG), Indore, India, pp. 1–6 (2016). https://doi.org/10.1109/ICTBIG.2016.7892698

  46. Singh, R., Singh, J., Singh, R.: WRHT: a hybrid technique for detection of wormhole attack in wireless sensor networks. J. Mob. Inf. Syst. 2016, 1–13 (2016). https://doi.org/10.1155/2016/8354930

    Article  Google Scholar 

  47. Parmar, A., Vaghelab, V.B.: Detection and prevention of wormhole attack in wireless sensor network using AOMDV protocol. Procedia Comput. Sci. 79, 700–707 (2016). https://doi.org/10.1016/j.procs.2016.03.092

    Article  Google Scholar 

  48. Shukla, P.: ML-IDS: A machine learning approach to detect Wormhole attacks in Internet of Things. In: 2017 Intelligent Systems Conference (IntelliSys), London, pp. 234–240 (2017). https://doi.org/10.1109/IntelliSys.2017.8324298

  49. Ahsan, M.S., Bhutta, M.N.M., Maqsood, M.: Wormhole attack detection in routing protocol for low power lossy networks. In: 2017 International Conference on Information and Communication Technologies (ICICT), Karachi, pp. 58–67 (2017). https://doi.org/10.1109/ICICT.2017.8320165

  50. Rmayti, M., Begriche, Y., Khatoun, R., Khoukhi, L., Mammeri, A.: Graph-based wormhole attack detection in mobile ad hoc networks (MANETs). In: 2018 Fourth International Conference on Mobile and Secure Services (MobiSecServ), Florida, USA, pp. 1–6 (2018). https://doi.org/10.1109/MOBISECSERV.2018.8311439

  51. Zikria, Y.B., Kim, S.W., Hahm, O., Afzal, M.K., Aalsalem, M.Y.: Internet of Things (IoT) operating systems management: opportunities, challenges, and solution. Sensors 19(8), 1–10 (2019). https://doi.org/10.3390/s19081793

    Article  Google Scholar 

  52. Reyna, A., Martín, C., Chen, J., Soler, E., Díaz, M.: On blockchain and its integration with IoT: challenges and opportunities. Future Gener. Comput. Syst. 88, 173–190 (2018). https://doi.org/10.1016/j.future.2018.05.046

    Article  Google Scholar 

  53. Huh, S., Cho, S., Kim, S.: Managing IoT devices using blockchain platform. In: 2017 19th International Conference on Advanced Communication Technology (ICACT), Bongpyeong, pp. 464–467 (2017). https://doi.org/10.23919/ICACT.2017.7890132

  54. Feng, Q., He, D., Zeadally, S., Khan, M.K., Kumar, N.: A survey on privacy protection in blockchain system. J. Netw. Comput. Appl. 126, 45–58 (2019). https://doi.org/10.1016/j.jnca.2018.10.020

    Article  Google Scholar 

  55. Antonopoulos, A.M.: Mastering Bitcoin: Unlocking Digital Cryptocurrencies, 1st edn. O’Reilly Media, Inc., Newton (2014). ISBN:1449374042 9781449374044

    Google Scholar 

  56. Virmani, C., Gupta, D.J., Choudhary, T.: Blockchain 2.0: an edge over technologies. In: Architectures and Frameworks for Developing and Applying Blockchain Technology. IGI Global, Pennsylvania (2019). https://doi.org/10.4018/978-1-5225-9257-0.ch009

  57. Monrat, A.A., Schelén, O., Andersson, K.: A survey of blockchain from the perspectives of applications, challenges, and opportunities. IEEE Access 7, 117134–117151 (2019). https://doi.org/10.1109/ACCESS.2019.2936094

    Article  Google Scholar 

  58. Otte, P., Vos, N.D., Pouwelse, J: TrustChain: A Sybil-resistant scalable blockchain. Future Gener. Comput. Syst. (2017). https://doi.org/10.1016/j.future.2017.08.048

  59. Douceur, J.R.: The sybil attack. In: 1st International Workshop on Peer-To-Peer Systems (IPTPS), Berlin, pp. 251–260 (2002)

  60. Sayeed, S., Marco-Gisbert, H.: Assessing blockchain consensus and security mechanisms against the 51% attack. Appl. Sci. 9(9), 1788 (2019). https://doi.org/10.3390/app9091788

    Article  Google Scholar 

  61. Aloqaily, M., Otoum, S., Al Ridhawi, I., Jararweh, Y.: An intrusion detection system for connected vehicles in smart cities. Ad Hoc Netw. 90, 101842 (2019). https://doi.org/10.1016/j.adhoc.2019.02.001

    Article  Google Scholar 

  62. Al-Turjman, F., Din, S., Paul, A.: Energy monitoring in IoT-based ad hoc networks: an overview. Comput. Electr. Eng. 76, 133–142 (2019). https://doi.org/10.1016/j.compeleceng.2019.03.013

    Article  Google Scholar 

  63. Demir, S.M., Al-Turjman, F., Muhtaroglu, A.: Energy-harvesting methods for WBAN applications. In: Al-Turjman, F. (ed.) Internet of Nano-Things and Wireless Body Area Networks (WBAN). CRC Press, Boca Raton (2019)

    Google Scholar 

  64. Balasubramanian, V., Zaman, F., Aloqaily, M., Alrabaee, S., Gorlatova, M., Reisslein, M.: Reinforcing the edge: autonomous energy management for mobile device clouds. In: IEEE International Conference on Computer Communications, Paris, France (2019)

  65. Al-Turjman, F., Zahmatkesh, H., Mostarda, L.: Quantifying uncertainty in internet of medical things and big-data services using intelligence and deep learning. In: IEEE Access (Early Access). https://doi.org/10.1109/ACCESS.2019.2931637

  66. Balasubramaniam, V., Aloqaily, M., Zaman, F., Jararweh, Y.: Exploring computing at the edge: a multi-interface system architecture enabled mobile device cloud. In: 2018 IEEE 7th International Conference on Cloud Networking (CloudNet),Tokyo, Japan (2018). https://doi.org/10.1109/CloudNet.2018.8549296

  67. Dai, Y., Xu, D., Maharjan, S., Chen, Z., He, Q., Zhang, Y.: Blockchain and deep reinforcement learning empowered intelligent 5G beyond. IEEE Netw. 33, 10–17 (2019). https://doi.org/10.1109/MNET.2019.1800376

    Article  Google Scholar 

  68. Rathee, G., Sharma, A., Iqbal, R., Aloqaily, M., Jaglan, N., Kumar, R.: A blockchain framework for securing connected and autonomous vehicles. Sensors 19, 3165 (2019). https://doi.org/10.3390/s19143165

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported in part by the Brain Korea 21 Plus Program (Grant No. 22A20130012814) funded by the National Research Foundation of Korea (NRF), in part by the MSIT (Ministry of Science and ICT), Korea, under the ITRC (Information Technology Research Center) support program (Grant No. IITP-2019-2016-0-00313) supervised by the IITP (Institute for Information & communications Technology Planning & Evaluation), and in part by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (Grant No. 2018R1D1A1A09082266).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung Won Kim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qadri, Y.A., Ali, R., Musaddiq, A. et al. The limitations in the state-of-the-art counter-measures against the security threats in H-IoT. Cluster Comput 23, 2047–2065 (2020). https://doi.org/10.1007/s10586-019-03036-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-019-03036-7

Keywords

Navigation