Skip to main content

Advertisement

Log in

Fog computing in enabling 5G-driven emerging technologies for development of sustainable smart city infrastructures

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

The usage of 5G-enabled IoT devices is rising exponentially as humans tend to shift towards a more automated lifestyle. A significant amount of IoT devices is expected to join the network as IoT has allowed interconnection and transmission among global devices which has resulted in generation of enormous diverse data. There is a requirement for a real-time, latency-specific, and network efficient computing paradigm in 5G-enabled smart city infrastructure. Fog computing presents trustworthy solutions to tackle these issues by combining edge users. They store, control, communicate, configure, measure, and manage big data produced by IoT devices. In this survey, the authors have performed a comprehensive study on fog computing and have classified various such paradigms. The authors have performed an extensive evaluation of features, along with the algorithmic and architectural packages deployed in the framework. This survey covers various 5G-enabled Industrial IoT (I-IoT) application settings and unleashes various fog framework-based solutions for numerous real-world application challenges in sustainable smart city infrastructures. Numerous contributions of fog computing towards latency-sensitive applications like healthcare 4.0, smart conveyance, smart waste management, smart energy handling, etc. has also been discussed. Fog computing framework apart from the abilities, also inherits various security flaws from cloud computing paradigm, and these flaws needs to be rectified in the interest of the end user. This survey presents a comprehensive review of state-of-the-art literature schemes to preserve the integrity of data in sustainable smart city infrastructure. Diverse phrases employed for investigating numerous security and privacy concerns in 5G enabled technologies are discussed in a sophisticated approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article.

Code availability

Not Applicable.

Abbreviations

ACI:

Access control issues

AH:

Account hijacking

AHP:

Analytic hierarchy process

ANN:

Artificial neural networks

ANU:

Abuse and nefarious use

API:

Application programming interface

APT:

Advance persistent threats

BCI:

Brain-computer interaction

BD:

Big data

CBSRS:

Cold and hot backup service replacement strategy

CIA:

Confidentiality, integrity and availability

CPS:

Cyber-physical system

DB:

Data breaches

DHT:

Distributed hash table

DL:

Data loss

DoS:

Denial of service

ERGOT:

Efficient routing grounded on taxonomy

FC:

Fog computing

FN:

Fog node

HS-DRT:

High security distribution and rake technology

IA:

Insecure APIs

IaaS:

Infrastructure-as-a-service

IDD:

Insufficient due diligence

IoT:

Internet of things

IRR:

Incidence rate ratio

MI:

Malicious insider

MiTM:

Man-in-the-middle

PaaS:

Platform-as-a-service

PCS:

Parity cloud service technique

RAN:

Radio access network

SaaS:

Software-as-a-service

SAV:

System and application vulnerabilities

SSL:

Secure socket layer

STI:

Shared technology issues

UI:

User interface

VANET:

Vehicular Ad-hoc NETworks

VM:

Virtual machine

WPA:

Wi-Fi protected access

References

  1. Ning, H., Liu, H., Ma, J., Yang, L.T., Huang, R.: Cybermatics: cyber-physical-social-thinking hyperspace-based science and technology. Future Gener. Comput. Syst. 56, 504–522 (2016)

    Google Scholar 

  2. He, Z., Cai, Z., Yu, J., Wang, X., Sun, Y., Li, Y.: Cost-efficient strategies for restraining rumor spreading in mobile social networks. IEEE Trans. Veh. Technol. 66(3), 2789–2800 (2017)

    Google Scholar 

  3. Luan, T.H., et al.: Fog computing: focusing on mobile users at the edge. ArXiv Preprint, Tech. Rep. (2016). https://arxiv.org/pdf/1502.01815.pdf

  4. Luo, G., Pan, Y.: ZTE communications special issue on cloud computing, fog computing, and dew computing. ZTE Commun. 15(1), 2 (2017)

    Google Scholar 

  5. Khan, S., Parkinson, S., Qin, Y.: Fog computing security: a review of current applications and security solutions. J. Cloud Comput. Adv. Syst. Appl. (2017). https://doi.org/10.1186/s13677-017-0090-3

    Article  Google Scholar 

  6. Mukherjee, M., Matam, R., Shu, L., Maglaras, L., Ferrag, M.A., Choudhury, N., Kumar, V.: Security and privacy in fog computing: challenges. IEEE Access (2017). https://doi.org/10.1109/ACCESS.2017.2749422

    Article  Google Scholar 

  7. Fu, J.-S., Liu, Y., Chao, H.-C., Bhargava, B.K., Zhang, Z.-J.: Secure data storage and searching for industrial IoT by integrating fog computing and cloud computing. IEEE Trans. Ind. Inf. 14(10), 4519–4528 (2018)

    Google Scholar 

  8. Yi, S., Li, C., Li, Q.: A survey of fog computing: concepts, applications and issues. In: Proc. Workshop Mobile Big Data, Hangzhou, China, pp. 37–42. (2015)

  9. Chiang, M., Ha, S., Risso, F., Zhang, T., Chih-Lin, I.: Clarifying fog computing and networking: 10 questions and answers. IEEE Commun. Mag. 55(4), 18–20 (2017)

    Google Scholar 

  10. Mukherjee, M., Shu, L., Wang, D.: Survey of fog computing: fundamental, network applications, and research challenges. IEEE Commun. Surv. Tutor. 20(3), 1826–1857 (2018)

    Google Scholar 

  11. Perera, C., Qin, Y., Estrella, J.C., Reiff-Marganiec, S., Vasilakos, A.V.: Fog computing for sustainable smart cities: a survey. ACM Comput. Surv. (CSUR) 50(3), 1–43 (2017)

    Google Scholar 

  12. Kai, K., Cong, W., Tao, L.: Fog computing for vehicular ad-hoc networks: Paradigms, scenarios, and issues. J. China Univ. Posts Telecommun. 23(2), 56–96 (2016)

    Google Scholar 

  13. Peng, M., Yan, S., Zhang, K., Wang, C.: Fog-computing-based radio access networks: issues and challenges. IEEE Netw. 30(4), 46–53 (2016)

    Google Scholar 

  14. Ku, Y.-J., et al.: 5G radio access network design with the fog paradigm: confluence of communications and computing. IEEE Commun. Mag. 55(4), 46–52 (2017)

    Google Scholar 

  15. Chiang, M., Zhang, T.: Fog and IoT: an overview of research opportunities. IEEE Internet Things J. 3(6), 854–864 (2016)

    Google Scholar 

  16. Li, Z., Zhou, X., Liu, Y., Xu, H., Miao, L.: A non-cooperative differential game-based security model in fog computing. China Commun. 14(1), 180–189 (2017)

    Google Scholar 

  17. Mahmud, R., Buyya, R.: Fog computing: a taxonomy, survey and future directions. (2016). arXiv:1611.05539

  18. Yousefpour, A., Fung, C., Nguyen, T., Kadiyala, K., Jalali, F., Niakanlahiji, A., Kong, J., Jue, J.P.: All one needs to know about fog computing and related edge computing paradigms: a complete survey. J. Syst. Architect. 98, 289–330 (2019)

    Google Scholar 

  19. Moosavia, S.R., Gia, T.N., Nigussie, E., Rahmania, A.M., Virtanen, S., Tenhunena, H., Isoaho, J.: End-to-end security scheme for mobility enabled healthcare Internet of things. Future Gener. Comput. Syst. 64, 108–124 (2016)

    Google Scholar 

  20. Odun-Ayo, I., Ananya, M., Agono, F., Goddy-Worlu, R.: Cloud computing architecture: a critical analysis. In: 2018 18th International Conference on Computational Science And Applications (ICCSA), pp. 1–7. IEEE, Piscataway (2018)

    Google Scholar 

  21. OpenFogConsortium: Openfog reference architecture for fog computing, 2017. https://www.openfogconsortium.org/ra/. Accessed Feb 2017

  22. Zhang, T.: Fog computing brings new business opportunities and disruptions. Blog, TechTarget. http://internetofthingsagenda.techtarget.com/blog/IoT-Agenda/Fog-computing-brings-new-business-opportunities-and-disruptions. Accessed Oct 2020

  23. Forman, G.H., Zahorjan, J.: The challenges of mobile computing. Computer (Long Beach Calif) 27(4), 38–47 (1994)

    Google Scholar 

  24. NIST: Mobile cloud computing. Technical Report, National Institute of Standards and Technology. https://www.nist.gov/programs-projects/mobile-cloud-computing. Accessed Oct 2020

  25. Arun, C., Prabu, K.: Applications of mobile cloud computing: a survey. In: 2017 International Conference on Intelligent Computing and Control Systems (ICICCS), pp. 1037–1041. IEEE, Piscataway (2017)

    Google Scholar 

  26. Yaqoob, I., Ahmed, E., Gani, A., Mokhtar, S., Imran, M., Guizani, S.: Mobile ad hoc cloud: a survey. Wirel. Commun. Mob. Comput. 16(16), 2572–2589 (2016)

    Google Scholar 

  27. OpenEdgeConsortium: About—the who, what, and how. Technical report, OpenEdge computing. http://openedgecomputing.org/about.html. Accessed Oct 2020

  28. Reale, A.: A guide to edge iot analytics. Blog, International Business Machines. https://www.ibm.com/blogs/internet-of-things/edge-iot-analytics. Accessed Nov 2020

  29. Hao, P., Bai, Y., Zhang, X., Zhang, Y.: Edgecourier: an edge-hosted personal service for low-bandwidth document synchronization in mobile cloud storage services. In: Proceedings of the Second ACM/IEEE Symposium on Edge Computing, p. 7. ACM, New York (2017)

    Google Scholar 

  30. Negash, B., Rahmani, A.M., Westerlund, T., Liljeberg, P., Tenhunen, H.: LISA: Lightweight internet of things service bus architecture. Procedia Comput. Sci. 52, 436–443 (2015)

    Google Scholar 

  31. Silva, P.M.P., Rodrigues, J., Silva, J., Martins, R., Lopes, L., Silva, F.: Using edge-clouds to reduce load on traditional wifi infrastructures and improve quality of experience. In: 2017 IEEE 1st International Conference on Fog and Edge Computing (ICFEC), pp. 61–67. IEEE, Piscataway (2017)

    Google Scholar 

  32. Salem, A., Nadeem, T.: Lamen: leveraging resources on anonymous mobile edge nodes. In: Proceedings of the Eighth Wireless of the Students, by the Students, and for the Students Workshop, pp. 15–17. ACM, New York (2016)

    Google Scholar 

  33. Morabito, R.: Virtualization on internet of things edge devices with container technologies: a performance evaluation. IEEE Access 5, 8835–8850 (2017)

    Google Scholar 

  34. Ray, P.P.: An introduction to dew computing: definition, concept and implications. IEEE Access 6, 723–737 (2017)

    Google Scholar 

  35. Pan, Y., Thulasiraman, P., Wang, Y.: Overview of cloudlet, fog computing, edge computing, and dew computing. In: Proc. 3rd Int. Workshop Dew Comput., pp. 20–23. (2018)

  36. Abdelwahab, S., Hamdaoui, B., Guizani, M., Znati, T.: Cloud of things for sensing-as-a-service: architecture, algorithms, and use case. IEEE Internet Things J. 3(6), 1099–1112 (2016)

    Google Scholar 

  37. Fu, T., Malik, S.A., Joshi, G., Nagaraj, A.: Apparatus, systems, and methods for distributed application orchestration and deployment.” U.S. Patent 9,684,502, issued June 20, 2017

  38. Zhang, P., Zhou, M., Fortino, G.: Security and trust issues in fog computing: a survey. Future Gener. Comput. Syst. 88, 16–27 (2018)

    Google Scholar 

  39. Fortino, G., Russo, W., Savaglio, C., Viroli, M., Zhou, M.: Modeling opportunistic IoT services in open IoT ecosystems, In: 17th Workshop from Objects to Agents, WOA 2017, pp. 90–95, Scilla, Italy (2017)

  40. Byers, C.C.: Architectural imperatives for fog computing: use cases, requirements, and architectural techniques for fog-enabled IoT networks. IEEE Commun. Mag. 55(8), 14–20 (2017)

    Google Scholar 

  41. Wen, Z., Yang, R., Garraghan, P., Lin, T., Xu, J., Rovatsos, M.: Fog orchestration for internet of things services. IEEE Internet Comput. 21(2), 16–24 (2017)

    Google Scholar 

  42. Aloi, G., Caliciuri, G., Fortino, G., Gravina, R., Pace, P., Russo, W., Savaglio, C.: Enabling IoT interoperability through opportunistic smartphone-based mobile gateways. J. Netw. Comput. Appl. 81, 74–84 (2017)

    Google Scholar 

  43. Sarma, B., Kumar, G., Kumar, R. and Tuithung, T.: Fog computing: an enhanced performance analysis emulation framework for IoT with load balancing smart gateway architecture. In: 2019 International Conference on Communication and Electronics Systems (ICCES), pp. 1–5. IEEE (2019)

  44. Fu, J., Liu, Y., Chao, H.C., Bhargava, B., Zhang, Z.: Secure data storage and searching for industrial IoT by integrating fog computing and cloud computing. IEEE Trans. Ind. Inf. (2018). https://doi.org/10.1109/TII.2018.2793350

    Article  Google Scholar 

  45. Okafor, K.C., Achumba, I.E., Chukwudebe, G.A., Ononiwu, G.C.: Leveraging fog computing for scalable IoT datacenter using spine-leaf network topology. J. Electr. Comput. Eng. (2017). https://doi.org/10.1155/2017/2363240

    Article  Google Scholar 

  46. Kang, B., Choo, H.: An experimental study of a reliable IoT gateway. ICT Express (2017). https://doi.org/10.1016/j.icte.2017.04.002

    Article  Google Scholar 

  47. Gazis, V., Görtz, M., Huber, M., Leonardi, A., Mathioudakis, K., Wiesmaier, A., Zeiger, F., Vasilomanolakis, E.: A survey of technologies for the Internet of things. In: 2015 International Wireless Communications and Mobile Computing Conference (IWCMC), Dubrovnik, Croatia, pp. 1090–1095

  48. Salman, O., Elhajj, I., Chehab, A., Kayssi, A.: IoT survey: an SDN and fog computing perspective. Comput. Netw. 143, 221–246 (2018)

    Google Scholar 

  49. Datta, S.K., Bonnet C., Haerri, J.: Fog computing architecture to enable consumer centric internet of things services. In: 2015 International Symposium on Consumer Electronics (ISCE), Madrid, Spain, p. 1

  50. Hassanzadeh-Nazarabadi, Y., Küpçü, A., Ozkasap, O.: Decentralized utility-and locality-aware replication for heterogeneous DHT-based P2P cloud storage systems. IEEE Trans. Parallel Distrib. Syst. 31(5), 1183–1193 (2019)

    Google Scholar 

  51. Vallati, C., Mingozzi, E., Tanganelli, G., Buonaccorsi, N., Valdambrini, N., Zonidis, N., Martínez, B., et al.: Betaas: a platform for development and execution of machine-to-machine applications in the internet of things. Wirel. Personal Commun. 87(3), 1071–1091 (2016)

    Google Scholar 

  52. Stergiou, C., Psannis, K.E., Kim, B.-G., Gupta, B.: Secure integration of IoT and cloud computing. Future Gener. Comput. Syst. 78, 964–975 (2018)

    Google Scholar 

  53. Mouradian, C., Naboulsi, D., Yangui, S., Glitho, R.H., Morrow, M.J., Polakos, P.A.: A comprehensive survey on fog computing: State-of-the-art and research challenges. IEEE Commun. Surv. Tutor. 20(1), 416–464 (2017)

    Google Scholar 

  54. Agarwal, S., Yadav, S., Yadav, A.K.: An efficient architecture and algorithm for resource provisioning in fog computing. Int. J. Inf. Eng. Electron. Bus. 8(1), 48–61 (2016)

    Google Scholar 

  55. Kapsalis, A., Kasnesis, P., Venieris, I.S., Kaklamani, D.I., Patrikakis, C.Z.: A cooperative fog approach for effective workload balancing. IEEE Cloud Comput. 4(2), 36–45 (2017)

    Google Scholar 

  56. Cardellini, V., Grassi, V., Presti, F.L., Nardelli, M.: On QoS-aware scheduling of data stream applications over fog computing infrastructures. In: Proceedings of the IEEE Symposium on Computers and Communication (ISCC), Larnaca, Cyprus, pp. 271–276. IEEE, Piscataway (2015)

    Google Scholar 

  57. Krishnan, Y.N., Bhagwat, C.N., Utpat, A.P.: Fog computing—network based cloud computing. In: Proc. 2nd Int. Conf. Electron. Commun. Syst. (ICECS), Coimbatore, India, pp. 250–251. (2015)

  58. Slabicki M., Grochla, K.: Performance evaluation of CoAP, SNMP and NETCONF protocols in fog computing architecture. In: Proc. IEEE/IFIP Netw. Oper. Manag. Symp. (NOMS), Istanbul, Turkey, pp. 1315–1319. (2016)

  59. Giang, N.K., Blackstock, M., Lea, R., Leung, V.C.M., Developing IoT applications in the fog: a distributed dataflow approach. In: Proc. 5th Int. Conf. Internet Things (IOT), Seoul, South Korea, pp. 155–162. (2015)

  60. Hong, K., Lillethun, D., Ramachandran, U., Ottenwälder, B., Koldehofe, B.: Mobile fog: a programming model for large-scale applications on the Internet of Things. In: Proc. 2nd ACM SIGCOMM Workshop Mobile Cloud Comput., Hong Kong, pp. 15–20. (2013)

  61. Yangui, S. et al.: A platform as-a-service for hybrid cloud/fog environments. In: Proc. IEEE int. Symp. Local Metropolitan Area Netw. (LANMAN), Rome, Italy, pp. 1–7. (2016)

  62. Zhanikeev, M.: A cloud visitation platform to facilitate cloud federation and fog computing. Computer 48(5), 80–83 (2015)

    Google Scholar 

  63. Stantchev, V., Barnawi, A., Ghulam, S., Schubert, J., Tamm, G.: Smart items, fog and cloud computing as enablers of servitization in healthcare. Sens. Transducers 185(2), 121–128 (2015)

    Google Scholar 

  64. Gia, T.N., et al.: Fog computing in healthcare internet of things: a case study on ECG feature extraction. In: Proc. IEEE int. Conf. Comput. Inf. Technol. Ubiquitous comput. Commun. Depend. Auton. Secure Comput. Pervasive Intell. Comput. (CIT/IUCC/DASC/PICOM), pp. 356–363. (2015)

  65. Zao, J.K. et al.: Augmented brain computer interaction based on fog computing and linked data. In: Proc. int. Conf. Intell. Environ. (IE), Shanghai, China, pp. 374–377. (2014)

  66. Fratu, O., Pena, C., Craciunescu, R., Halunga, S.: Fog computing system for monitoring mild dementia and COPD patients—Romanian case study. In: Proc. 12th INT. CONF. TELECOMMUN. Modern Satellite Cable Broadcast. Services (SIKS), Niš, Serbia, pp. 123–128. (2015)

  67. Masip-Bruin, X., Marín-Tordera, E., Alonso, A., Garcia, J.: Fog-to-cloud computing (F2C): the key technology enabler for dependable e-health services deployment. In: Proc. Mediterranean ad hoc netw. Workshop (Med Hoc Net), pp. 1–5. (2016)

  68. Monteiro, A., Dubey, H., Mahler, L., Yang, Q., Mankodiya, K.: Fit: a fog computing device for speech tele-treatments. In: Proc. IEEE Int. Conf. Smart Comput. (SMARTCOMP), St. Louis, MO, USA, pp. 1–3. (2016)

  69. Dubey, H. et al.: Fog data: enhancing telehealth big data through fog computing, In: Proc. ASE BigData Soc. Informat., New York, NY, USA, pp. 1–6. (2015)

  70. Hou, X., et al.: Vehicular fog computing: a viewpoint of vehicles as the infrastructures. IEEE Trans. Veh. Technol. 65(6), 3860–3873 (2016)

    Google Scholar 

  71. Truong, N.B., Lee, G.M., Ghamri-Doudane, Y.: Software defined networking-based vehicular adhoc network with fog computing. In: Proc. IFIP/IEEE Int. Symp. Integr. Netw. Manag. (IM), Ottawa, ON, Canada, pp. 1202–1207. (2015)

  72. Li, J., Jin, J., Yuan, D., Palaniswami, M., Moessner, K.: EHOPES: data-centered fog platform for smart living. In: Proc. Int. Telecommun. Netw. Appl. Conf. (ITNAC), Sydney, NSW, Australia, pp. 308–313. (2015)

  73. Brzoza-Woch, R., Konieczny, M., Nawrocki, P., Szydlo, T., Zielinski, K.: Embedded systems in the application of fog computing—levee monitoring use case. In: Proc. 11th IEEE Symp. Ind. Embedded Syst. (SIES), Kraków, Poland, pp. 1–6. (2016)

  74. Aazam, M., Huh, E.-N., E-HAMC: leveraging fog computing for emergency alert service. In: Proc. IEEE Int. Conf. Pervasive Comput. Commun. Workshops (PerCom Workshops), St. Louis, MO, USA, pp. 518–523. (2015)

  75. Gazis, V. et al.: Components of fog computing in an industrial internet of things context. In: Proc. 12th Annu. IEEE Int. Conf. Sens. Commun. Netw. Workshops (SECON Workshops), Seattle, WA, USA, pp. 1–6. (2015)

  76. Xu, Y., Mahendran, V., Radhakrishnan, S.: Towards SDN-based fog computing: MQTT broker virtualization for effective and reliable delivery. In: Proc. 8th Int. Conf. Commun. Syst. Netw. (COMSNETS), Bengaluru, India, pp. 1–6. (2016)

  77. Berndt, H., Graubmann, P., Wakano, M.: Service specification concepts in TINA-C. In: Kugler, H.-J., Mullery, A., Niebert, N. (eds.) Towards a Pan-European Telecommunication Service Infrastructure—IS&N ’94, pp. 355–366. Springer, Heidelberg (1994)

    Google Scholar 

  78. Kyriazakos, S., et al.: eWALL: An intelligent caring home environment offering personalized context-aware applications based on advanced sensing. Wirel. Pers. Commun. 87(3), 1093–1111 (2016)

    Google Scholar 

  79. Abedin, S.F., Alam, M.G.R., Tran, N.H., Hong, C.S.: A fog based system model for cooperative IoT node pairing using matching theory. In: Proc. 17th Asia–Pac. Netw. Oper. Manag. Symp. (APNOMS), Busan, South Korea, pp. 309–314. (2015)

  80. Nishio, T., Shinkuma, R., Takahashi, T., Mandayam, N.B., Service-oriented heterogeneous resource sharing for optimizing service latency in mobile cloud. In: Proc. 1st Int. Workshop Mobile Cloud Comput. Netw., Bengaluru, India, pp. 19–26. (2013)

  81. Zeng, D., Gu, L., Guo, S., Cheng, Z., Yu, S.: Joint optimization of task scheduling and image placement in fog computing supported software-defined embedded system. IEEE Trans. Comput. 65(12), 3702–3712 (2016)

    MathSciNet  MATH  Google Scholar 

  82. Intharawijitr, K., Iida, K., Koga, H.: Analysis of fog model considering computing and communication latency in 5G cellular networks. In: Proc. IEEE Int. Conf. Pervasive Comput. Commun. Workshops (PerCom Workshops), Sydney, NSW, Australia, pp. 1–4.

  83. Ningning, S., Chao, G., Xingshuo, A., Qiang, Z.: Fog computing dynamic load balancing mechanism based on graph repartitioning. China Commun. 13(3), 156–164 (2016)

    Google Scholar 

  84. Li, S., Maddah-Ali, M.A., Avestimehr, A.S.: Coding for distributed fog computing. IEEE Commun. Mag. 55(4), 34–40 (2017)

    Google Scholar 

  85. Do, C.T. et al.: A proximal algorithm for joint resource allocation and minimizing carbon footprint in geo-distributed fog computing. In: Proc. Int. Conf. Inf. Netw. (ICOIN), pp. 324–329.

  86. Chen, D., Schedler, S., Kuehn, V.: Backhaul traffic balancing and dynamic content-centric clustering for the downlink of fog radio access network. In: Proc. IEEE 17th Int. Workshop Signal Process. Adv. Wireless Commun. (SPAWC), Edinburgh, U.K., pp. 1–5. (2016)

  87. Sarkar, S., Misra, S.: Theoretical modelling of fog computing: a green computing paradigm to support IoT applications. IET Netw. 5(2), 23–29 (2016)

    Google Scholar 

  88. Sarkar, S., Chatterjee, S., Misra, S.: Assessment of the suitability of fog computing in the context of Internet of Things. IEEE Trans. Cloud Comput. 6, 46–59 (2015)

    Google Scholar 

  89. Deng, R., Lu, R., Lai, C., Luan, T.H.: Towards power consumption delay tradeoff by workload allocation in cloud-fog computing. In: Proc. IEEE Int. Conf. Commun. (ICC), London, U.K., pp. 3909–3914. (2015)

  90. Gu, L., Zeng, D., Guo, S., Barnawi, A., Xiang, Y.: Cost efficient resource management in fog computing supported medical cyber-physical system. IEEE Trans. Emerg. Top. Comput. 5(1), 108–119 (2017)

    Google Scholar 

  91. Cao, Y., Chen, S., Hou, P., Brown, D.: FAST: a fog computing assisted distributed analytics system to monitor fall for stroke mitigation. In: Proc. IEEE Int. Conf. Netw. Archit. Storage (NAS), Boston, MA, USA, pp. 2–11. (2015)

  92. Mei, B., Cheng, W., Cheng, X.: Fog computing based ultraviolet radiation measurement via smartphones. In: Proc. 3rd IEEE Workshop Hot Topics Web Syst. Technol. (HotWeb), Washington, DC, USA, pp. 79–84. (2015)

  93. Kim, O.T.T., Tri, N.D., Nguyen, V.D., Tran, N.H., Hong, C.S.: A shared parking model in vehicular network using fog and cloud environment. In: Proc. 17th Asia–Pac. Netw. Oper. Manag. Symp. (APNOMS), Busan, South Korea, pp. 321–326. (2015)

  94. Lin Y., Shen, H.: Cloud fog: towards high quality of experience in cloud gaming. In: Proc. 44th Int. Conf. Parallel Process., Beijing, China, pp. 500–509. (2015)

  95. Tang, M., Gao, L., Pang, H., Huang, J., Sun, L.: Optimizations and economics of crowdsourced mobile streaming. IEEE Commun. Mag. 55(4), 21–27 (2017)

    Google Scholar 

  96. Fuerst, A., Ali-Eldin, A., Shenoy, P., Sharma, P.: Cloud-scale VM deflation for running interactive applications on transient servers. (2020). arXiv preprint arXiv:2006.00508

  97. Terpák, J., Horovčák, P., Lukáč, M.: Mathematical models creation using orchestration and choreography of web services. In: 2016 17th International Carpathian Control Conference (ICCC), pp. 739–742. IEEE (2016)

  98. Gruber, T.R.: A translation approach to portable ontology specifications. Knowl. Acquis. 5(2), 199–220 (1993)

    Google Scholar 

  99. Yongsiriwit, K., Sellami, M., Gaaloul, W.: A semantic framework supporting cloud resource descriptions interoperability. In: Proc. IEEE 9th Int. Conf. Cloud Comput. (CLOUD), San Francisco, CA, USA, pp. 585–592. (2016)

  100. Raza, M.R., Varol, A.: QoS parameters for viable SLA in cloud. In: 2020 8th International Symposium on Digital Forensics and Security (ISDFS), pp. 1–5. IEEE (2020)

  101. Zaheer, F.-E., Xiao, J., Boutaba, R.: Multi-provider service negotiation and contracting in network virtualization. In: Proc. IEEE Netw. Oper. Manag. Symp. (NOMS), Osaka, Japan, pp. 471–478. (2010)

  102. Delta Cloud. Delta Cloud-Many Clouds. One Api. No Problem.[Online]. Available: https://deltacloud.apache.org/. Accessed 28 Feb 2017

  103. Yangui, S., Tata, S.: An OCCI compliant model for PaaS resources description and provisioning. Comput. J. 59, 308–324 (2014)

    Google Scholar 

  104. Sellami, R., Vedrine, M., Bhiri, S., Defude, B.: Automating resources discovery for multiple data stores cloud applications. In: Proc. 5th Int. Conf. Cloud Comput. Services Sci. (CLOSER), Lisbon, Portugal, pp. 397–405. (2015)

  105. Naboulsi, D., Fiore, M., Ribot, S., Stanica, R.: Large-scale mobile traffic analysis: a survey. IEEE Commun. Surv. Tutor. 18(1), 124–161 (2016)

    Google Scholar 

  106. Dhole, A., Thomas, M.V., Chandrasekaran, K.: An efficient trust-based game-theoretic approach for cloud federation formation. In: Proc. 3rd Int. Conf. Adv. Comput. Commun. Syst. (ICACCS), vol. 1. Coimbatore, India, pp. 1–6. (2016)

  107. Pan, J.-S., Dao, T.-K.: A compact bat algorithm for unequal clustering in wireless sensor networks. Appl. Sci. 9(10), 1973 (2019)

    Google Scholar 

  108. Mondal, S., Das, G., Wong, E.: Cost-optimal cloudlet placement frameworks over fiber-wireless access networks for low-latency applications. J. Netw. Comput. Appl. 138, 27–38 (2019)

    Google Scholar 

  109. Ghobaei-Arani, M., Souri, A., Rahmanian, A.A.: Resource management approaches in fog computing: a comprehensive review. J. Grid Comput. (2019). https://doi.org/10.1007/s10723-019-09491-1

    Article  Google Scholar 

  110. Secci, S., Raad, P., Gallard, P.: Linking virtual machine mobility to user mobility. IEEE Trans. Netw. Serv. Manage. 13(4), 927–940 (2016)

    Google Scholar 

  111. Jalali, F., Hinton, K., Ayre, R., Alpcan, T., Tucker, R.S.: Fog computing may help to save energy in cloud computing. IEEE J. Sel. Areas Commun. 34(5), 1728–1739 (2016)

    Google Scholar 

  112. OpenFog Consortium. https://www.openfogconsortium.org. Accessed Oct 2020

  113. Su, J., Lin, F., Zhou, X., Lu, X.: Steiner tree based optimal resource caching scheme in fog computing. China Commun. 12(8), 161–168 (2015)

    Google Scholar 

  114. Bouachir, O., et al.: Blockchain and fog computing for cyberphysical systems: the case of smart industry. Computer 53(9), 36–45 (2020). https://doi.org/10.1109/MC.2020.2996212

    Article  Google Scholar 

  115. Lakhwani, K., Gianey, H., Agarwal, N., Gupta, S.: Development of IoT for smart agriculture a review. In: Emerging Trends in Expert Applications and Security, pp. 425–432. Springer, Singapore (2019)

    Google Scholar 

  116. Qiu, Q., Sun, Na., Bai, He., Wang, N., Fan, Z., Wang, Y., Meng, Z., Li, B., Cong, Y.: Field-based high-throughput phenotyping for Maize plant using 3D LiDAR point cloud generated with a “Phenomobile.” Front. Plant Sci. 10, 554 (2019)

    Google Scholar 

  117. Soh, Z.H., Husa, M.A., Abdullah, S.A., Shafie, M.A.: Smart waste collection monitoring and alert system via IoT. In: 2019 IEEE 9th Symposium on Computer Applications & Industrial Electronics (ISCAIE), pp. 50–54. IEEE, Piscataway (2019)

    Google Scholar 

  118. Deng, R., Lu, R., Lai, C., Luan, T.H., Liang, H.: Optimal workload allocation in fog-cloud computing toward balanced delay and power consumption. IEEE Internet Things J. 3(6), 1171–1181 (2016)

    Google Scholar 

  119. Zhang, X., Chen, H., Zhao, Y., Ma, Z., Xu, Y., Huang, H., Yin, H., Wu, D.O.: Improving cloud gaming experience through mobile edge computing. IEEE Wirel. Commun. 26(4), 178–183 (2019)

    Google Scholar 

  120. GamingAnywhere. http://gaminganywhere.org/. Accessed 20 Mar 2017

  121. ETSI–Intelligent Transport. http://www.etsi.org/technologies-clusters/technologies/intelligent-transport. Accessed 20 Mar 2017

  122. Kumar, V., Ahmad, M., Mishra, D., Kumari, S., Khan, M.K.: RSEAP: RFID based secure and efficient authentication protocol for vehicular cloud computing. Veh. Commun. 22, 100213 (2020)

    Google Scholar 

  123. Shojafar, M., Cordeschi, N., Baccarelli, E.: Energy-efficient adaptive resource management for real-time vehicular cloud services. IEEE Trans. Cloud Comput. 7, 196–209 (2016)

    Google Scholar 

  124. Giang, N.K., Leung, V.C., Lea, R.: On developing smart transportation applications in fog computing paradigm. In: Proc. 6th ACM Symp. Develop. Anal. Intell. Veh. Netw. Appl. (DIVANet), pp. 91–98. (2016)

  125. Al Faruque, M.A., Vatanparvar, K.: Energy management-as-a-service over fog computing platform. IEEE Internet Things J. 3(2), 161–169 (2016)

    Google Scholar 

  126. Gill, S.S., Garraghan, P., Buyya, R.: ROUTER: fog enabled cloud based intelligent resource management approach for smart home IoT devices. J. Syst. Softw. 154, 125–138 (2019)

    Google Scholar 

  127. Mahmud, R., Toosi, A.N., Ramamohanarao, K., Buyya, R.: Context-aware placement of industry 4.0 applications in fog computing environments. IEEE Trans. Ind. Inform. 16, 7004–7013 (2019)

    Google Scholar 

  128. Mukherjee, M., Shu, L., Wang, D., Li, K., Chen, Y.: Poster abstract: a fog computing-based framework to reduce traffic overhead in large-scale industrial applications. In: Proc. IEEE INFOCOM, Atlanta, GA, USA, pp. 1–2. (2017)

  129. Bruneo, D. et al.: Stack4Things as a fog computing platform for smart city applications. In: Proc. IEEE Conf. Comput. Commun. Workshops (INFOCOM WKSHPS), San Francisco, CA, USA, pp. 848–853. (2016)

  130. De Vita, F., Bruneo, D.: Leveraging Stack4Things for federated learning in intelligent cyber physical systems. J. Sens. Actuator Netw. 9(4), 59 (2020)

    Google Scholar 

  131. Chen, N., Chen, Y., Song, S., Huang, C.-T., Ye, X.: Poster abstract: Smart urban surveillance using fog computing. In: Proc. IEEE/ACM Symp. Edge Comput. (SEC), pp. 95–96. (2016)

  132. El Fawal, A.H., Mansour, A., Najem, M.: V2V Influence on M2M and H2H Traffics During Emergency Scenarios. IGI Global, Hershey (2019)

    Google Scholar 

  133. Kumari, A., Tanwar, S., Tyagi, S., Kumar, N.: Fog computing for healthcare 4.0 environment: opportunities and challenges. Comput. Electr. Eng. 72, 1–13 (2018)

    Google Scholar 

  134. Vora, J., Tanwar, S., Tyagi, S., Kumar, N., Rodrigues, J.J.P.C.: FAAL: fog computing-based patient monitoring system for ambient assisted living. In: Proceedings of the IEEE 19th International Conference on E-health Networking, Applications and Services (Healthcom), pp. 1–6. (2017)

  135. Wu, F., Wu, T., Yuce, M.: An internet-of-things (IoT) network system for connected safety and health monitoring applications. Sensors 19, 21 (2018)

    Google Scholar 

  136. Ullah, U., Sehr, I., Akbar, M., Ning, H.: FoG assisted secure de-duplicated data dissemination in smart healthcare IoT. In: Proc. IEEE Int. Conf. Smart Internet Things (SmartIoT), Xi’an, China, pp. 166–171. (2018)

  137. Rahmani, A.M., et al.: Exploiting smart e-health gateways at the edge of healthcare internet-of-things: a fog computing approach. Future Gener. Comput. Syst. 78, 641–658 (2018)

    Google Scholar 

  138. Siddique, A., Hasan, O., Khalid, F., Shafique, M.: ApproxCS: near-sensor approximate compressed sensing for IoT-healthcare systems. (2018). arXiv: 1811.07330v1.

  139. Rias, R.N.B., Akbar, M.S., Aazam, M.: Fog-supported internet of things (IoTs) architecture for remote patient monitoring systems using wireless body area sensor networks. In: Proc. IEEE DASC/PiCom/DataCom/CyberSciTech, Athens, Greece, pp. 462–466. (2018)

  140. Jangra, P., Gupta, M.: A design of real-time ulti-layered smart healthcare monitoring framework using IoT. In: Proc. Int. Conf. Intell. Adv. Syst. (ICIAS), Kuala Lumpur, Malaysia, pp. 1–5. (2018)

  141. Muhammed, T., Mehmood, R., Albeshri, A., Katib, I.: UbeHealth: a personalized ubiquitous cloud and edge-enabled networked healthcare system for smart cities. IEEE Access 6, 32258–32285 (2018)

    Google Scholar 

  142. George, A., Dhanasekaran, H., Chittiappa, J.P., Challagundla, L.A., Nikkam, S.S., Abuzaghleh, O., Internet of things in health care using fog computing. In: Proc. IEEE Long Island Syst. Appl. Technol. Conf. (LISAT), Farmingdale, NY, USA, pp. 1–6. (2018)

  143. Azimi, I., Takalo-Mattila, J., Azanpour, A., Rahmani, A.M., Soininen, J., Liljeberg, P.: Empowering healthcare IoT systems with hierarchical edge-based deep learning. In: Proc. IEEE/ACM Int. Conf. Connected Health Appl. Syst. Eng. Technol. (CHASE), Washington DC, USA, pp. 63–68. (2018)

  144. Elayan, H., Aloqaily, M., Guizani, M.: Sustainability of healthcare data analysis IoT-based systems using deep federated learning. IEEE Internet of Things J. (2021). https://doi.org/10.1109/JIOT.2021.3103635

    Article  Google Scholar 

  145. Hayyolalam, V., Aloqaily, M., Özkasap, Ö., Guizani, M.: Edge intelligence for empowering IoT-based healthcare systems. IEEE Wirel. Commun. 28(3), 6–14 (2021). https://doi.org/10.1109/MWC.001.2000345

    Article  Google Scholar 

  146. Peralta, G., Iglesias-Urkia, M., Barcelo, M., Gomez, R., Moran, A., Bilbao, J.: Fog computing based efficient iot scheme for the industry 4.0. In: Proceedings of the IEEE International Workshop of Electronics, Control, Measurement, Signals and Their Application to Mechatronics (ECMSM), pp. 1–6. (2017)

  147. Akrivopoulos, O., Chatzigiannakis, I., Tselios, C., Antoniou, A.: On the deployment of healthcare applications over fog computing infrastructure. In: Proceedings of the IEEE 41st Annual Computer Software and Applications Conference (COMPSAC), pp. 288–93. (2017)

  148. He, D., Kumar, N., Wang, H., Wang, L., Choo, K.K.R., Vinel, A.: A provably-secure cross-domain handshake scheme with symptoms-matching for mobile healthcare social network. In: Proceedings of the IEEE Transactions on Dependable and Secure Computing, pp. 1–2. (2016)

  149. Al-Khafajiy, M., Otoum, S., Baker, T., Asim, M., Maamar, Z., Aloqaily, M., Taylor, M., Randles, M.: Intelligent control and security of fog resources in healthcare systems via a cognitive fog model. ACM Trans. Internet Technol. 21(3), 23 (2021). https://doi.org/10.1145/3382770

    Article  Google Scholar 

  150. Elmisery, A.M., Rho, S., Botvich, D.: A fog based middleware for automated compliance with OECD privacy principles in internet of healthcare things. IEEE Access 4, 8418–8441 (2016)

    Google Scholar 

  151. Tasic, J., Gusev, M., Ristov, S.: A medical cloud. In: Proceedings of the 9th international convention on information and communication technology, electronics and microelectronics (MIPRO), p. 400–405. (2016)

  152. Ramalho, F., Neto, A., Santos, K., Filho, J.B., Agoulmine, N.: Enhancing e-health smart applications: a fog-enable. In: Proc. 17th HealthCom, Boston, MA, USA, pp. 323–328. (2015)

  153. Anya, O., Tawfik, H.: Designing for practice-based context-awareness in ubiquitous e-health environments. Comput. Electr. Eng. 61, 312–326 (2017)

    Google Scholar 

  154. Dastjerdi, A.V., Buyya, R.: Fog computing: helping the internet of things realize its potential. Computers 49(8), 112–116 (2016)

    Google Scholar 

  155. Ni, J., Lin, X., Zhang, K., Shen, X.: Privacy-preserving real-time navigation system using vehicular crowdsourcing. In: Proc. IEEE VTC Fall, Montreal, QC, Canada, pp. 1–5. (2016)

  156. Gupta, H., Nath, S.B., Chakraborty, S., Ghosh, S.K.: SDFog: a software defined computing architecture for QoS aware service orchestration over edge devices. ArXiv Preprint, Tech. Rep. (2017). https://arxiv.org/pdf/1609.01190.pdf

  157. Shi, W., Dustdar, S.: The promise of edge computing. Computers 49(5), 78–81 (2016)

    Google Scholar 

  158. Zhang, T.: Fog boosts capabilities to add more things securely to the internet, Cisco Blogs, San Jose, CA, USA (2016)

  159. Ahmed, E., Rehmani, M.H.: Mobile edge computing: opportunities, solutions, and challenges. Future Gener. Comput. Syst. 70, 59–63 (2017)

    Google Scholar 

  160. Zhang, T.: Malware defense is a team sport, best played by collaborative fog nodes, Cisco Blogs, San Jose, CA, USA (2016)

  161. Shi, W., Cao, J., Zhang, Q., Li, Y., Xu, L.: Edge computing: vision and challenges. IEEE Internet Things J. 3(5), 637–646 (2016)

    Google Scholar 

  162. Wang, C., Liang, C., Yu, F.R., Chen, Q., Tang, L.: Computation offloading and resource allocation in wireless cellular networks with mobile edge computing. IEEE Trans. Wirel. Commun. 16(8), 4924–4938 (2017)

    Google Scholar 

  163. Wang, Y., Sheng, M., Wang, X., Wang, L., Li, J.: Mobile-edge computing: Partial computation offloading using dynamic voltage scaling. IEEE Trans. Commun. 64(10), 4268–4282 (2016)

    Google Scholar 

  164. Roman, R., Lopez, J., Manbo, M.: Mobile edge computing, fog et al.: a survey and analysis of security threats and challenges. Future Gener. Comput. Syst. 78, 680–698 (2018)

    Google Scholar 

  165. Ni, J., Lin, X., Zhang, K., Yu, Y.: Secure and deduplicated spatial crowdsourcing: A fog-based approach. In: Proc. Globecom, Washington, DC, USA, pp. 1–6. (2016)

  166. Bost, R., Minaud, B., Ohrimenko, O.: Forward and backward private searchable encryption from constrained cryptographic primitives. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, pp. 1465–1482. (2017)

  167. Ni, J., Zhang, K., Lin, X., Shen, X.: Securing fog computing for internet of things applications: challenges and solutions. IEEE Commun. Surv. Tutor. 20(1), 601–628 (2017)

    Google Scholar 

  168. Huo, Y., Hu, C., Qi, X., Jing, T.: LoDPD: a location difference-based proximity detection protocol for fog computing. IEEE Internet Things J. 4(5), 1117–1124 (2017)

    Google Scholar 

  169. Yang, R., et al.: Position based cryptography with location privacy: a step for fog computing. Future Gener. Comput. Syst. 78, 799–806 (2018)

    Google Scholar 

  170. Yu, S.: Big privacy: challenges and opportunities of privacy study in the age of big data. IEEE Access 4, 2751–2763 (2016)

    Google Scholar 

  171. Stojmenovic, I., Wen, S., Huang, X., Luan, H.: An overview of fog computing and its security issues. Concurr. Comput. Pract. Exp. 28(10), 2991–3005 (2016)

    Google Scholar 

  172. Tuli, S., Mahmud, R., Tuli, S., Buyya, R.: Fogbus: a blockchain-based lightweight framework for edge and fog computing. J. Syst. Softw. 154, 22–36 (2019)

    Google Scholar 

  173. University, C.M. Elijah: cloudlet infrastructure for mobile computing. GitHub (2017)

  174. Pereira, P., Araujo, J., Torquato, M., Dantas, J., Melo, C., Maciel, P.: Stochastic performance model for web server capacity planning in fog computing. J. Supercomput. (2020). https://doi.org/10.1007/s11227-020-03218-w

    Article  Google Scholar 

  175. Aldwairi, M., Hasan, M., Balbahaith, Z.: Detection of drive-by download attacks using machine learning approach. In: Cognitive Analytics: Concepts, Methodologies, Tools, and Applications, pp. 1598–1611. IGI Global (2020)

  176. Heuser, S., Negro, M., Pendyala, P.K., Sadeghi, A.R.: Technical Report: DroidAuditor: Forensic Analysis of Application-Layer Privilege Escalation Attacks on Android (2016)

  177. Singh, P., Tiwari, P., Singh, S.: Analysis of malicious behavior of android apps. Proced. Comput Sci 79, 215–221 (2016)

    Google Scholar 

  178. Sucasas, V., Mantas, G., Radwan, A., Rodriguez, J.: An Oauth2-based protocol with strong user privacy preservation for smart city mobile e-health apps. In: 2016 IEEE International Conference on Communications (ICC), pp. 1–6. IEEE (2016)

  179. Ge, X., Pan, Y., Fan, Y., Fang, C.: AMDroid: android malware detection using function call graphs. In: 2019 IEEE 19th International Conference on Software Quality, Reliability and Security Companion (QRS-C), pp. 71–77. IEEE (2019)

  180. Chang, V., Ramachandran, M.: Towards achieving data security with the cloud computing adoption framework. IEEE Trans. Serv. Comput. 9(1), 138–152 (2016)

    Google Scholar 

  181. Huang, Y., Debnath, J., Iorga, M., Kumar, A., Xie, B.: CSAT: a user-interactive cyber security architecture tool based on NIST-compliance security controls for risk management. In: 2019 IEEE 10th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON), pp. 0697–0707. IEEE (2019)

  182. Mao, Y., Li, J., Chen, M.R., Liu, J., Xie, C., Zhan, Y.: Fully secure fuzzy identity-based encryption for secure iot communications. Comput. Stand. Interfaces 44, 117–122 (2016)

    Google Scholar 

  183. Azzabi, T., Farhat, H., Sahli, N.: A survey on wireless sensor networks security issues and military specificities. In: 2017 International Conference on Advanced Systems and Electric Technologies (IC_ASET), pp. 66–72. IEEE (2017)

  184. Chen, R.Y.: An intelligent value stream-based approach to collaboration of food traceability cyber physical system by fog computing. Food Control 71, 124–137 (2017)

    Google Scholar 

  185. Joshi B, Singh NK (2016) Mitigating dynamic dos attacks in mobile ad hoc network. In: Colossal Data Analysis and Networking (CDAN), Symposium On. IEEE. Pp 1–8

  186. Mishra, S., Sahoo, M.N., Bakshi, S., Rodrigues, J.J.: Dynamic resource allocation in fog-cloud hybrid systems using multicriteria AHP techniques. IEEE Internet Things J. 7(9), 8993–9000 (2020)

    Google Scholar 

  187. Ha, D.A., Nguyen, K.T., Zao, J.K.: Efficient authentication of resource-constrained iot devices based on ecqv implicit certificates and datagram transport layer security protocol. In: Proceedings of the Seventh Symposium on Information and Communication Technology. ACM. pp 173–180. (2016)

  188. Alliance, C.S.: The Treacherous 12 Cloud Computing Top Threats in 2016 (2016). https://downloads.cloudsecurityalliance.org/assets/research/top-threats/Treacherous-12_Cloud-Computing_Top-Threats.Pdf. Accessed 03 Oct 2020

  189. Puthal, D., Mohanty, S.P., Bhavake, S.A., Morgan, G., Ranjan, R.: Fog computing security challenges and future directions [energy and security]. IEEE Consum. Electron. Mag. 8(3), 92–96 (2019)

    Google Scholar 

  190. Shin, S., Gu, G. (2012) Cloudwatcher: network security monitoring using openflow in dynamic cloud networks (or: How to provide security monitoring as a service in clouds?). In: Network Protocols (ICNP), 2012 20th IEEE international conference on. pp 1–6. IEEE

  191. Ab Rahman, N.H., Choo, K.-K.R.: A survey of information security incident handling in the cloud. Comput. Secur. 49, 45–69 (2015)

    Google Scholar 

  192. Ma, X., Fu, X., Luo, B., Du, X., Guizani, M.: A design of firewall based on feedback of intrusion detection system in cloud environment. In: 2019 IEEE Global Communications Conference (GLOBECOM), pp. 1–6. IEEE (2019)

  193. Hathaliya, J.J., Tanwar, S.: An exhaustive survey on security and privacy issues in Healthcare 4.0. Comput. Commun. 153, 311–335 (2020)

    Google Scholar 

  194. Tamimi, A.A., Dawood, R., Sadaqa, L.: Disaster recovery techniques in cloud computing. In: 2019 IEEE Jordan International Joint Conference on Electrical Engineering and Information Technology (JEEIT), pp. 845–850. IEEE (2019)

  195. Zhang, W., Tian, D.: FindEvasion: an effective environment-sensitive malware detection system for the cloud. In: Digital Forensics and Cyber Crime: 9th International Conference, ICDF2C 2017, Prague, Czech Republic, October 9–11, 2017, Proceedings, vol. 216, p. 3. Springer (2018)

  196. Berlin, K., Saxe, J.: Improving zero-day malware testing methodology using statistically significant time-lagged test samples. (2016). arXiv preprint arXiv:1608.00670

  197. Varriale, A., Prinetto, P., Carelli, A., Trotta, P.: Secube ™: data at rest and data in motion protection. In: Proceedings of the International Conference on Security and Management (SAM). The Steering Committee of The World Congress in Computer Science, Computer Engineering and Applied Computing (WorldComp), Athens. pp 138–145. (2016)

  198. Hussein, N.H., Khalid, A., Khanfar, K.: A survey of cryptography cloud storage techniques. Int. J. Comput. Sci. Mob. Comput. 5, 186–191 (2016)

    Google Scholar 

  199. Liu, F., Hao, Wu., Mai, K., Lee, R.B.: Newcache: Secure cache architecture thwarting cache side-channel attacks. IEEE Micro 36(5), 8–16 (2016)

    Google Scholar 

  200. Panigrahy, N.K., Li, J., Towsley, D., Hollot, C.V.: Network cache design under stationary requests: exact analysis and poisson approximation. Comput. Netw. 180, 107379 (2020)

    Google Scholar 

  201. Zhou, Z., Reiter, M.K., Zhang, Y.: A software approach to defeating side channels in last-level caches. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, pp. 871–882. (2016)

Download references

Acknowledgements

This work is partially funded by FCT/MCTES through national funds and when applicable co-funded EU funds under the Project UIDB/50008/2020; and by Brazilian National Council for Scientific and Technological Development – CNPq, via Grant No. 313036/2020-9.

Funding

This work is partially funded by FCT/MCTES through national funds and when applicable co-funded EU funds under the Project UIDB/50008/2020; and by Brazilian National Council for Scientific and Technological Development—CNPq, via Grant No. 313036/2020-9.

Author information

Authors and Affiliations

Authors

Contributions

Not Applicable.

Corresponding author

Correspondence to Shashank Gupta.

Ethics declarations

Conflict of interest

The authors do not have any conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jain, S., Gupta, S., Sreelakshmi, K.K. et al. Fog computing in enabling 5G-driven emerging technologies for development of sustainable smart city infrastructures. Cluster Comput 25, 1111–1154 (2022). https://doi.org/10.1007/s10586-021-03496-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-021-03496-w

Keywords

Navigation