Skip to main content

Advertisement

Log in

A new approach for mechanical parameter inversion analysis of roller compacted concrete dams using modified PSO and RBFNN

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

The mechanical parameter inversion model is an essential part of ensuring dam health; it provides a parametric basis for assessing the safe operational behavior of dams using numerical simulation techniques. Due to the complicated nonlinear mapping relationship between the roller compacted concrete (RCC) dam's mechanical parameters and various environmental quantities, as well as conventional statistical models, machine learning methods, and neural networks fail to consider the inputs of fuzzy uncertainty factors. Therefore, the accuracy, efficiency, and stability of inversion models are usually affected by their modeling methods. In this paper, a novel hybrid model for mechanical parameter inversion of an RCC dam is proposed, which uses a radial basis function neural network (RBFNN) to establish the nonlinear mapping relationship between the dam mechanical parameters and the environmental quantities, and the modified particle swarm optimization (PSO) algorithm is used to find the optimal parameters of the model. The modified PSO algorithm makes the inertia weight ω dynamically adjust with the number of iterations to improve the randomness and diversity of the particle population, and population crossover and mutation are introduced to improve the global search ability and convergence speed of the algorithm. The proposed hybrid model is verified and comparatively analyzed by four typical mathematical test functions, and the results show that the proposed model exhibits good performance in parameter inversion accuracy, convergence speed, stability and robustness. Finally, the model is applied to the mechanical parameter inversion analysis of an RCC gravity dam in Henan Province in China. The results show that the proposed model is feasible and reasonable for practical engineering applications, and the relative error between the results obtained by inputting the inverted parameters into the numerical model and monitoring data was within 10%. The methodology derived from this study can provide technical support and a reference for the mechanical parameter inversion analysis of similar dam projects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

The data that supports the findings of this study are available within the article and the code that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Warren, T.: Roller-compacted concrete dams: a brief history and their advantages. Dams Reserv. 22(2), 87–90 (2020). https://doi.org/10.1680/dare.12.00010

    Article  Google Scholar 

  2. Li, M.C., Zhang, M.X., Hu, Y., Zhang, J.R.: Mechanical properties investigation of high-fluidity impermeable and anti-cracking concrete in high roller-compacted concrete dams. Constr. Build. Mater. 156, 861–870 (2017). https://doi.org/10.1016/j.conbuildmat.2017.08.026

    Article  Google Scholar 

  3. Wang, L., Zhang, G.X., Wang, P.Y., Yu, S.: Effects of fly ash and crystalline additive on mechanical properties of two-graded roller compacted concrete in a high RCC arch dam. Constr. Build. Mater. 182, 682–690 (2018). https://doi.org/10.1016/j.conbuildmat.2018.06.101

    Article  Google Scholar 

  4. Tong, F., Yang, J., Ma, C.H., Cheng, L., Li, G.C.: The prediction of concrete dam displacement using Copula-PSO-ANFIS hybrid model. Arab. J. Sci. Eng. 47(4), 4335–4350 (2022). https://doi.org/10.1007/s13369-021-06100-w

    Article  Google Scholar 

  5. Gu, C.S., Wang, S.W., Bao, T.F.: Influence of construction interfaces on dynamic characteristics of roller compacted concrete dams. J. Cent. South Univ. 22, 1521–1535 (2015). https://doi.org/10.1007/s11771-015-2669-5

    Article  Google Scholar 

  6. Zheng, D.J., Li, X.Q., Yang, M., Su, H.Z., Gu, C.S.: Copula entropy and information diffusion theory-based new prediction method for high dam monitoring. Earthq. Struct. 14(2), 143–153 (2018). https://doi.org/10.12989/eas.2018.14.2.143

    Article  Google Scholar 

  7. Wei, B.W., Gu, C.S., Li, H.K., Xiong, W., Xu, Z.K.: Modeling method for predicting seepage of RCC dams considering time-varying and lag effect. Struct. Control Health Monit. 25(2), e2081 (2018). https://doi.org/10.1002/stc.2081

    Article  Google Scholar 

  8. Li, M.C., Si, W., Du, S.L., Zhang, M.X., Ren, Q.B., Shen, Y.: Thermal deformation coordination analysis of CC-RCC combined dam structure during construction and operation periods. Eng. Struct. 213, 110587 (2020). https://doi.org/10.1016/j.engstruct.2020.110587

    Article  Google Scholar 

  9. Su, H.Z., Wen, Z.P., Yan, X.Q., Liu, H.P., Yang, M.: Early-warning model of deformation safety for roller compacted concrete arch dam considering time-varying characteristics. Compos. Struct. 203, 373–381 (2018). https://doi.org/10.1016/j.compstruct.2018.07.023

    Article  Google Scholar 

  10. Yu, Y., Liu, X.L., Wang, E.Z., Fang, K., Huang, L.: Dam safety evaluation based on multiple linear regression and numerical simulation. Rock Mech. Rock Eng. 51(8), 2451–2467 (2018). https://doi.org/10.1007/s00603-018-1435-z

    Article  Google Scholar 

  11. Da, M.C., Su, Z.Y.: Stress and deformation analysis of concrete-facing sand–gravel dam based on inversion parameters. Geotech. Geol. Eng. 39, 1399–1408 (2021). https://doi.org/10.1007/s10706-020-01565-2

    Article  Google Scholar 

  12. Liu, C.G., Gu, C.S., Chen, B.: Zoned elasticity modulus inversion analysis method of a high arch dam based on unconstrained Lagrange support vector regression (support vector regression arch dam). Eng. Comput. 33, 443–456 (2017). https://doi.org/10.1007/s00366-016-0483-9

    Article  Google Scholar 

  13. Pan, S.Y., Cheng, J., Li, T.C.: The forward and inversion analysis of high rock-fill dam during construction period using the node-based smoothed point interpolation method. Eng. Comput. 37(5), 1531–1555 (2020). https://doi.org/10.1108/EC-05-2019-0192

    Article  Google Scholar 

  14. Qiang, S., Wang, X.R., Xie, Z.Q., Zheng, Z.Q.: The parameter inversion and stress simulation analysis for high RCC gravity dam in construction. Appl. Mech. Mater. 182–183, 1600–1604 (2012). https://doi.org/10.4028/www.scientific.net/AMM.182-183.1600

    Article  Google Scholar 

  15. Zhou, W., Li, S.L., Ma, G., Chang, X.L., Ma, X., Zhang, C.: Parameters inversion of high central core rockfill dams based on a novel genetic algorithm. Sci. China Technol. Sci. 59(5), 783–794 (2016). https://doi.org/10.1007/s11431-016-6017-2

    Article  Google Scholar 

  16. Ren, J., Shen, Z.Z., Yang, J., Yu, C.: Back analysis of the 3D seepage problem and its engineering applications. Environ. Earth Sci. 75(2), 113 (2016). https://doi.org/10.1007/s12665-015-4837-1

    Article  Google Scholar 

  17. Sun, P.M., Bao, T.F., Gu, C.S., Jiang, M., Wang, T., Shi, Z.W.: Parameter sensitivity and inversion analysis of a concrete faced rock-fill dam based on HS-BPNN algorithm. Sci. China Technol. Sci. 59, 1442–1451 (2016). https://doi.org/10.1007/s11431-016-0213-y

    Article  Google Scholar 

  18. Zhang, W.B., Shen, Z.Z., Chen, G.Y., Zhang, W.L., Xu, L.Q., Ren, J., Wang, F.: Optimization design and assessment of the effect of seepage control at reservoir sites under karst conditions: a case study in Anhui Province, China. Hydrogeol. J. 29, 1831–1855 (2021). https://doi.org/10.1007/s10040-021-02357-5

    Article  Google Scholar 

  19. Li, G., Hu, Y., Li, Q.B., Yin, T., Miao, J.X., Yao, M.D.: Inversion method of in situ stress and rock damage characteristics in dam site using neural network and numerical simulation—a case study. IEEE Access 8, 46701–46712 (2020). https://doi.org/10.1109/ACCESS.2020.2979024

    Article  Google Scholar 

  20. Gan, L., Shen, Z.Z., Zhang, H.W.: New deformation back analysis method for the creep model parameters using finite element nonlinear method. Clust. Comput. 20, 3225–3236 (2017). https://doi.org/10.1007/s10586-017-1049-3

    Article  Google Scholar 

  21. Li, H.K., Wang, Y.J., Wei, B.W.: Inversion algorithm for the whole prototype dynamic displacement field of a high arch dam based on limited measuring points. J. Vib. Control 23(20), 3431–3447 (2017). https://doi.org/10.1177/1077546316630078

    Article  Google Scholar 

  22. Gan, L., Shen, Z.Z., Chen, G.Y.: A new approach to permeability inversion of fractured rock masses and its engineering application. Water 12(3), 734 (2020). https://doi.org/10.3390/w12030734

    Article  Google Scholar 

  23. Pace, F., Santilano, A., Godio, A.: A review of geophysical modeling based on particle swarm optimization. Surv. Geophys. 42, 505–549 (2021). https://doi.org/10.1007/s10712-021-09638-4

    Article  Google Scholar 

  24. Zhang, Y.F., Liu, X.X., Bao, F.X., Chi, J., Zhan, C.M., Liu, P.D.: Particle swarm optimization with adaptive learning strategy. Knowl. Based Syst. 196, 105789 (2020). https://doi.org/10.1016/j.knosys.2020.105789

    Article  Google Scholar 

  25. Li, Y.L., Sun, Y.T., Li, B., Xu, Z.G.: Penalty function-based method for obtaining a reliability indicator of gravity dam stability. Comput. Geotech. 81, 19–25 (2017). https://doi.org/10.1016/j.compgeo.2016.07.003

    Article  Google Scholar 

  26. Ardito, R., Maier, G., Massalongo, G.: Diagnostic analysis of concrete dams based on seasonal hydrostatic loading. Eng. Struct. 30(11), 3176–3185 (2008). https://doi.org/10.1016/j.engstruct.2008.04.008

    Article  Google Scholar 

  27. Yang, K., Jiang, G.H., Qu, Q., Peng, H.F., Gao, X.W.: A new modified conjugate gradient method to identify thermal conductivity of transient non-homogeneous problems based on radial integration boundary element method. Int. J. Heat Mass Transf. 133, 669–676 (2019). https://doi.org/10.1016/j.ijheatmasstransfer.2018.12.145

    Article  Google Scholar 

  28. Yim, J., Hong, S., Lee, Y., Min, K.B.: A novel method to determine five elastic constants of a transversely isotropic rock using a single-orientation core by strip load test and strain inversion. Int. J. Rock Mech. Min. Sci. 154, 105115 (2022). https://doi.org/10.1016/j.ijrmms.2022.105115

    Article  Google Scholar 

  29. Li, J.S., Elsworth, D.: A modified Gauss-Newton method for aquifer parameter identification. Groundwater 33(4), 662–668 (1995). https://doi.org/10.1111/j.1745-6584.1995.tb00322.x

    Article  Google Scholar 

  30. Yeh, W.W.G.: Review of parameter identification procedures in groundwater hydrology: the inverse problem. Water Resour. Res. 22(2), 677–688 (1986). https://doi.org/10.1029/WR022i002p00095

    Article  Google Scholar 

  31. Zhou, W., Li, S.L., Ma, G., Chang, X.L., Ma, X., Zhang, C.: Parameters inversion of high central core rockfill dams based on a novel genetic algorithm. Sci. China Technol. Sci. 59, 783–794 (2016). https://doi.org/10.1007/s11431-016-6017-2

    Article  Google Scholar 

  32. Liu, Y.J., Lu, W.B., Wang, G.H., Lyu, L.M., Chen, Y.Q.: Structural parameter inversion of a gravity dam based on the dynamic response induced by an underwater explosion. J. Vib. Control (2022). https://doi.org/10.1177/10775463211066992

    Article  Google Scholar 

  33. Li, G., Hu, Y., Li, Q.B., Yin, T., Miao, J.X., Yao, M.D.: Inversion method of in-situ stress and rock damage characteristics in dam site using neural network and numerical simulation-a case study. IEEE Access 8, 46701–46712 (2020). https://doi.org/10.1109/ACCESS.2020.2979024

    Article  Google Scholar 

  34. Zheng, D.J., Cheng, L., Bao, T.F., Lv, B.B.: Integrated parameter inversion analysis method of a CFRD based on multi-output support vector machines and the clonal selection algorithm. Comput. Geotech. 47, 68–77 (2013). https://doi.org/10.1016/j.compgeo.2012.07.006

    Article  Google Scholar 

  35. Su, Y., Weng, K.L., Lin, C., Zheng, Z.M.: An improved random forest model for the prediction of dam displacement. IEEE Access 9, 9142–9153 (2021). https://doi.org/10.1109/ACCESS.2021.3049578

    Article  Google Scholar 

  36. AlKhaitb, A.A.A., Sawalha, T., AlZu’bi, S.: Load balancing techniques in software-defined cloud computing: an overview. In: Proceedings of the Seventh International Conference on Software Defined Systems (SDS), pp. 240–244. IEEE, Paris (2020). https://doi.org/10.1109/SDS49854.2020.9143874

  37. AlZu’bi, S., Jararweh, Y.: Data fusion in autonomous vehicles research, literature tracing from imaginary idea to smart surrounding community. In: Proceedings of the Fifth International Conference on Fog and Mobile Edge Computing (FMEC), pp. 306–311. IEEE, Paris (2020). https://doi.org/10.1109/FMEC49853.2020.9144916

  38. Alkhatib, A.A.A., Alsabbagh, A., Maraqa, R., Alzubi, S.: Load balancing techniques in cloud computing: extensive review. Adv. Sci. Technol. Eng. Syst. J. 6(2), 860–870 (2021). https://doi.org/10.25046/aj060299

    Article  Google Scholar 

  39. Qi, C.C., Fourie, A.: A real-time back-analysis technique to infer rheological parameters from field monitoring. Rock Mech. Rock Eng. 51, 3029–3043 (2018). https://doi.org/10.1007/s00603-018-1513-2

    Article  Google Scholar 

  40. Wang, M.H., Chi, S.C., Xie, Y.F., Zhou, X.X.: Dynamic parameters inversion analysis of rockfill materials considering interaction effects based on weak earthquakes. Soil Dyn. Earthq. Eng. 130, 105968 (2020). https://doi.org/10.1016/j.soildyn.2019.105968

    Article  Google Scholar 

  41. Sun, P.M., Bao, T.F., Gu, C.S., Jiang, T., Shi, Z.W.: Parameter sensitivity and inversion analysis of a concrete faced rock-fill dam based on HS-BPNN algorithm. Sci. China Technol. Sci. 59, 1442–1451 (2016). https://doi.org/10.1007/s11431-016-0213-y

    Article  Google Scholar 

  42. Guo, Q., Zhang, H.B., Tian, J.B., Liang, L.F., Shang, Z.P.: A nonlinear multiparameter prestack seismic inversion method based on hybrid optimization approach. Arab. J. Geosci. 11(3), 48 (2018). https://doi.org/10.1007/s12517-018-3392-y

    Article  Google Scholar 

  43. Huang, Y.Y., Xie, T., Xu, Y., Wang, R.L.: Evaluation of the mechanical parameters of a reinforced concrete dam based on multi-source data. Struct. Concr. 23(2), 652–668 (2022). https://doi.org/10.1002/suco.202100797

    Article  Google Scholar 

  44. Aqel, D., Al-Zubi, S., Mughaid, A., Jararweh, Y.: Extreme learning machine for plant diseases classification: a sustainable approach for smart agriculture. Clust. Comput. 25(3), 2007–2020 (2022). https://doi.org/10.1007/s10586-021-03397-y

    Article  Google Scholar 

  45. Wang, X., Kang, F., Li, J.J., Wang, X.: Inverse parametric analysis of seismic permanent deformation for earth-rockfill dams using artificial neural networks. Math. Probl. Eng. 2012, 383749 (2012). https://doi.org/10.1155/2012/383749

    Article  MathSciNet  MATH  Google Scholar 

  46. Chi, S.C., Ni, S.S., Liu, Z.P.: Back analysis of the permeability coefficient of a high core rockfill dam based on a RBF neural network optimized using the PSO algorithm. Math. Probl. Eng. 2015, 124042 (2015). https://doi.org/10.1155/2015/124042

    Article  Google Scholar 

  47. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of ICNN'95—International Conference on Neural Networks, pp. 1942–1948. IEEE, Perth (1995). https://doi.org/10.1109/ICNN.1995.488968

  48. Nickabadi, A., Ebadzadeh, M.M., Safabakhsh, R.: A novel particle swarm optimization algorithm with adaptive inertia weight. Appl. Soft Comput. 11(4), 3658–3670 (2011). https://doi.org/10.1016/j.asoc.2011.01.037

    Article  Google Scholar 

  49. Meng, A.B., Li, Z., Yin, H., Chen, S.Z., Guo, Z.Z.: Accelerating particle swarm optimization using crisscross search. Inf. Sci. 329, 52–72 (2016). https://doi.org/10.1016/j.ins.2015.08.018

    Article  Google Scholar 

  50. Gong, Y.J., Li, J.J., Zhou, Y.C., Li, Y., Chung, H.S.H., Shi, Y.H., Zhang, J.: Genetic learning particle swarm optimization. IEEE Trans. Cybern. 46(10), 2277–2290 (2016). https://doi.org/10.1109/TCYB.2015.2475174

    Article  Google Scholar 

  51. Chen, Y.G., Li, L.X., Peng, H.P., Xiao, J.H., Yang, Y.X., Shi, Y.H.: Particle swarm optimizer with two differential mutation. Appl. Soft Comput. 61, 314–330 (2017). https://doi.org/10.1016/j.asoc.2017.07.020

    Article  Google Scholar 

  52. Kiran, M.S.: Particle swarm optimization with a new update mechanism. Appl. Soft Comput. 60, 670–678 (2017). https://doi.org/10.1016/j.asoc.2017.07.050

    Article  Google Scholar 

  53. Broomhead, D.S., Lowe, D.: Multivariable functional interpolation and adaptive networks. Complex Syst. 2, 321–355 (1988)

    MathSciNet  MATH  Google Scholar 

  54. Yu, L., Shi, F., Wang, H., Hu, F.: MATLAB Intelligent Algorithm—30 Case Studies. Beihang University Press, Beijing (2015)

    Google Scholar 

  55. Mühlenbein, H., Schomisch, M., Born, J.: The parallel genetic algorithm as function optimizer. Parallel Comput. 17(6–7), 619–632 (1991). https://doi.org/10.1016/S0167-8191(05)80052-3

    Article  MATH  Google Scholar 

  56. Molga, M., Smutnicki, C.: Test functions for optimization needs. Test Funct. Optim. Needs 101, 48 (2005)

    Google Scholar 

  57. Tanweer, M.R., Suresh, S., Sundararajan, N.: Self regulating particle swarm optimization algorithm. Inf. Sci. 294, 182–202 (2015). https://doi.org/10.1016/j.ins.2014.09.053

    Article  MathSciNet  MATH  Google Scholar 

  58. Aydilek, I.B.: A hybrid firefly and particle swarm optimization algorithm for computationally expensive numerical problems. Appl. Soft Comput. 66, 232–249 (2018). https://doi.org/10.1016/j.asoc.2018.02.025

    Article  Google Scholar 

  59. Ren, J., Zhang, W.B., Yang, J.: Morris sensitivity analysis for hydrothermal coupling parameters of embankment dam: a case study. Math. Probl. Eng. 2019, 2196578 (2019). https://doi.org/10.1155/2019/2196578

    Article  Google Scholar 

  60. Yang, L.F., Su, H.Z., Wen, Z.P.: Improved PLS and PSO methods-based back analysis for elastic modulus of dam. Adv. Eng. Softw. 131, 205–216 (2019). https://doi.org/10.1016/j.advengsoft.2019.02.005

    Article  Google Scholar 

  61. Chen, B., Huang, Z.S., Bao, T.F., Zhu, Z.: Deformation early-warning index for heightened gravity dam during impoundment period. Water Sci. Eng. 14(1), 54–64 (2021). https://doi.org/10.1016/j.wse.2021.03.001

    Article  Google Scholar 

  62. Bejani, M.M., Ghatee, M.: A systematic review on overftting control in shallow and deep neural networks. Artif. Intell. Rev. 54(8), 6391–6438 (2021). https://doi.org/10.1007/s10462-021-09975-1

    Article  Google Scholar 

  63. Han, H.G., Chen, Q.L., Qiao, J.F.: An efficient self-organizing RBF neural network for water quality prediction. Neural Netw. 24(7), 717–725 (2011). https://doi.org/10.1016/j.neunet.2011.04.006

    Article  MATH  Google Scholar 

  64. Chen, K.X., Yao, L.N., Zhang, D.L., Wang, X.Z., Chang, X.J., Nie, F.P.: A semisupervised recurrent convolutional attention model for human activity recognition. IEEE Trans. Neural Netw. Learn. Syst. 31(5), 1747–1756 (2020). https://doi.org/10.1109/TNNLS.2019.2927224

    Article  Google Scholar 

  65. Zhang, D.L., Yao, L.N., Chen, K.X., Wang, S., Chang, X.J., Liu, Y.H.: Making sense of spatio-temporal preserving representations for EEG-based human intention recognition. IEEE Trans. Cybern. 50(7), 3033–3044 (2020). https://doi.org/10.1109/TCYB.2019.2905157

    Article  Google Scholar 

  66. Luo, M.N., Chang, X.J., Nie, L.Q., Yang, L.Q., Hauptmann, A.G., Zheng, Q.H.: An adaptive semisupervised feature analysis for video semantic recognition. IEEE Trans. Cybern. 48(2), 648–660 (2017). https://doi.org/10.1109/TCYB.2017.2647904

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous reviewers and editors for their valuable comments and helpful suggestions.

Funding

This work was supported by the Project of National Natural Science Foundation of China (52179130; U1765205), the Fundamental Research Funds for the Central Universities (B210203065; B200203039), the Postgraduate Research and Practice Innovation Program of Jiangsu Province (KYCX21_0510), the National Key R&D Program of China (2019YFC1510802), and the Priority Academic Program Development of Jiangsu Higher Education Institutions (Water Conservancy Project) (YS11001).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Wenbing Zhang or Zhenzhong Shen.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Xu, L., Shen, Z. et al. A new approach for mechanical parameter inversion analysis of roller compacted concrete dams using modified PSO and RBFNN. Cluster Comput 25, 4633–4652 (2022). https://doi.org/10.1007/s10586-022-03715-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-022-03715-y

Keywords

Navigation