Skip to main content
Log in

Nonmonotone projected gradient methods based on barrier and Euclidean distances

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

We consider nonmonotone projected gradient methods based on non-Euclidean distances, which play the role of barrier for a given constraint set. Our basic scheme uses the resulting projection-like maps that produces interior trajectories, and combines it with the recent nonmonotone line search technique originally proposed for unconstrained problems by Zhang and Hager. The combination of these two ideas leads to produce a nonmonotone scheme for constrained nonconvex problems, which is proven to converge to a stationary point. Some variants of this algorithm that incorporate spectral steplength are also studied and compared with classical nonmonotone schemes based on the usual Euclidean projection. To validate our approach, we report on numerical results solving bound constrained problems from the CUTEr library collection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Auslender, A., Teboulle, M.: Interior Gradient and Epsilon-subgradient methods for constrained convex minimization. Math. Oper. Res. 29, 1–26 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  2. Auslender, A., Teboulle, M.: Interior projection-like methods for monotone variational inequalities. Math. Program. 104, 39–68 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  3. Auslender, A., Teboulle, M.: Interior gradient and proximal methods for convex and conic optimization. SIAM J. Optim. 16, 697–725 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  4. Auslender, A., Teboulle, M., Ben-Tiba, S.: Interior proximal and multiplier methods based on second order homogeneous kernels. Math. Oper. Res. 24, 645–668 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  5. Beck, A., Teboulle, M.: Mirror descent and nonlinear projected subgradient methods for convex optimization. Oper. Res. Lett. 31, 167–175 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  6. Ben-Tal, A., Margalit, T., Nemirovsky, A.: The ordered subsets mirror descent optimization method with applications to tomography. SIAM J. Optim. 12, 79–108 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bertsekas, D.: Nonlinear Programming, 2nd edn. Athena Scientific, Belmont (1999)

    MATH  Google Scholar 

  8. Birgin, E.G., Martinez, J.M., Raydan, M.: Nonmonotone spectral projected gradient methods on convex sets. SIAM J. Optim. 10, 1196–1211 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  9. Birgin, E.G., Martinez, J.M., Raydan, M.: Algorithm 813:SPG: Software for convexly constrained optimization. ACM Trans. Math. Softw. 27, 340–349 (2001)

    Article  MATH  Google Scholar 

  10. Dai, Y.H.: A nonmonotone conjugate gradient algorithm for unconstrained optimization. J. System Sci. Complex 15, 139–145 (2002)

    MATH  Google Scholar 

  11. Dolan, E., Moré, J.J.: Benchmarking optimization software with performance profiles. Math. Program. 91, 201–213 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  12. Gould, N.I.M., Orban, D., Toint, P.L.: CUTEr and SifDec: a constrained and unconstrained testing environment, revisited. ACM Trans. Math. Softw. 29, 373–394 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  13. Grippo, L., Lampariello, F., Lucidi, S.: A monotone line search technique for Newton’s method. SIAM J. Numer. Anal. 23, 707–716 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  14. Grippo, L., Lampariello, F., Lucidi, S.: A truncated Newton method with nonmonotone line search for unconstrained minimization. J. Optim. Theory Appl. 60, 401–419 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  15. Lucidi, S., Rochetich, F., Roma, M.: Curvilinear stabilization techniques for truncated Newton methods in large -scale unconstrained optimization. SIAM J. Optim. 8, 916–939 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  16. Polyak, B.T.: Introduction to Optimization. Optimization Software, New York (1987)

    Google Scholar 

  17. Press, W.H., Flannery, B.P., Teukolsky, S.A., Vetterling, W.T.: Numerical Recipes in C: the Art of Scientific Computing, 2nd edn. Cambridge University Press, Cambridge (1992)

    Google Scholar 

  18. Raydan, E.R.: The Barzilai and Borwein gradient method for the large scale unconstrained minimization problem. SIAM J. Optim. 7, 26–33 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  19. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)

    MATH  Google Scholar 

  20. Rockafellar, R.T., Wets, R.J.-B.: Variational Analysis. Springer, New York (1998)

    MATH  Google Scholar 

  21. Silva, P.J.S., Eckstein, J., Humes, C.: Rescaling and stepsize selection in proximal methods using separable generalized distances. SIAM J. Optim. 12, 238–261 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  22. Zhang, H., Hager, W.: A nonmonotone line search technique and its application to unconstrained optimization. SIAM J. Optim. 14, 1043–1056 (2004)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Teboulle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Auslender, A., Silva, P.J.S. & Teboulle, M. Nonmonotone projected gradient methods based on barrier and Euclidean distances. Comput Optim Appl 38, 305–327 (2007). https://doi.org/10.1007/s10589-007-9025-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-007-9025-0

Keywords

Navigation