Skip to main content
Log in

Solving molecular distance geometry problems by global optimization algorithms

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

In this paper we consider global optimization algorithms based on multiple local searches for the Molecular Distance Geometry Problem (MDGP). Three distinct approaches (Multistart, Monotonic Basin Hopping, Population Basin Hopping) are presented and for each of them a computational analysis is performed. The results are also compared with those of two other approaches in the literature, the DGSOL approach (Moré, Wu in J. Glob. Optim. 15:219–234, 1999) and a SDP based approach (Biswas et al. in An SDP based approach for anchor-free 3D graph realization, Technical Report, Operations Research, Stanford University, 2005).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Biswas, P., Liang, T.-C., Toh, K.-C., Ye, Y.: An SDP based approach for anchor-free 3D graph realization. Technical Report, Operations Research, Stanford University, Stanford, CA (2005).

  2. Crippen, G., Havel, T.: Distance Geometry and Molecular Conformation. Wiley, New York (1988)

    MATH  Google Scholar 

  3. Dong, Q., Wu, Z.: A geometric build-up algorithm for solving the molecular distance geometry problem with sparse distance data. J. Glob. Optim. 26, 321–333 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  4. Doye, J.P.K., Leary, R.H., Locatelli, M., Schoen, F.: The global optimization of Morse clusters by potential transformations. INFORMS J. Comput. 16, 371–379 (2004)

    Article  Google Scholar 

  5. Grosso, A., Locatelli, M., Schoen, F.: A population based approach for hard global optimization problems based on dissimilarity measures. Math. Program. 110, 373–404 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  6. Grosso, A., Locatelli, M., Schoen, F.: An experimental analysis of population based approach for global optimization. Comput. Optim. Appl. DOI: 10.1007/s10589-007-9026-z (2007)

    MathSciNet  Google Scholar 

  7. Hendrickson, B.A.: The molecular problem: determining conformation from pairwise distances. Ph. D. Thesis, Cornell University (1991)

  8. Leary, R.H.: Global optima of Lennard-Jones clusters. J. Glob. Optim. 11, 35–53 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  9. Leary, R.H.: Global optimization on funneling landscapes. J. Glob. Optim. 18, 367–383 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  10. Locatelli, M., Schoen, F.: Efficient algorithms for large scale global optimization: Lennard-Jones clusters. Comput. Optim. Appl. 26, 173–190 (2006)

    Article  MathSciNet  Google Scholar 

  11. Locatelli, M.: On the multilevel structure of global optimization problems. Comput. Optim. Appl. 30, 5–22 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  12. Moré, J., Wu, Z.: Global continuation for distance geometry problems. SIAM J. Optim 7, 814–836 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  13. Moré, J., Wu, Z.: Distance geometry optimization for protein structures. J. Glob. Optim. 15, 219–234 (1999)

    Article  MATH  Google Scholar 

  14. www.pdb.org

  15. Saxe, J.B.: Embeddability of graphs in k-space is strongly NP-hard. In: 17th Allerton Conference in Communication, Control and Computing, pp. 480–489 (1979)

  16. Wales, D.J.: Energy Landscapes with Applications to Clusters, Biomolecules and Glasses. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  17. Wales, D.J., Doye, J.P.K.: Global optimization by basin-hopping and the lowest energy structures of Lennard-Jones clusters containing up to 110 atoms. J. Phys. Chem. A 101, 5111–5116 (1997)

    Article  Google Scholar 

  18. Williams, G.A., Dugan, J.M., Altman, R.B.: Constrained global optimization for estimating molecular structure from atomic distances. J. Comput. Biol. 8, 523–547 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Grosso.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grosso, A., Locatelli, M. & Schoen, F. Solving molecular distance geometry problems by global optimization algorithms. Comput Optim Appl 43, 23–37 (2009). https://doi.org/10.1007/s10589-007-9127-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-007-9127-8

Keywords

Navigation