Skip to main content
Log in

Optimal location of the support of the control for the 1-D wave equation: numerical investigations

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

We consider in this paper the homogeneous 1-D wave equation defined on Ω⊂ℝ. Using the Hilbert Uniqueness Method, one may define, for each subset ω⊂Ω, the exact control v ω of minimal L 2(ω×(0,T))-norm which drives to rest the system at a time T>0 large enough. We address the question of the optimal position of ω which minimizes the functional \(J:\omega \rightarrow \|v_{\omega}\|_{L^{2}(\omega \times (0,T))}\) . We express the shape derivative of J as an integral on ω×(0,T) independently of any adjoint solution. This expression leads to a descent direction for J and permits to define a gradient algorithm efficiently initialized by the topological derivative associated with J. The numerical approximation of the problem is discussed and numerical experiments are presented in the framework of the level set approach. We also investigate the well-posedness of the problem by considering a relaxed formulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allaire, G., Jouve, F., Toader, A.M.: Structural optimization using sensitivity analysis and level-set methods. J. Comput. Phys. 194(1), 363–393 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  2. Asch, M., Lebeau, G.: Geometrical aspects of exact controllability for the wave equation—a numerical study. Esaim: COCV 3, 163–212 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  3. Barles, G., Sougadinis, P.E.: On the large time behavior of solutions of Hamilton-Jacobi equations. SIAM J. Math. Anal. 31(4), 925–939 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  4. Burger, M., Osher, S.J.: A survey on level set methods for inverse problems and optimal design. Eur. J. Appl. Math. 16(2), 263–301 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  5. Cagnol, J., Zolesio, J.P.: Shape derivative in the wave equation with Dirichlet boundary condition. J. Differ. Equ. 158, 175–210 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  6. Castro, C., Micu, S., Münch, A.: Numerical approximation of the boundary control of the 2-D wave equation with mixed finite elements. IMA Numer. Anal. (in press), doi:10.1093/imanum/drm012

  7. Cea, J.: Conception optimale ou identification de formes, calcul rapide de la dérivée directionnelle de la fonction coût. Math. Model. Numer. Anal. 20(3), 371–402 (1986)

    MATH  MathSciNet  Google Scholar 

  8. Delfour, M.C., Zolesio, J.P.: Shapes and Geometries—Analysis, Differential Calculus and Optimization. Advances in Design and Control. SIAM, Philadelphia (2001)

    MATH  Google Scholar 

  9. Garreau, S., Guillaume, P., Masmoudi, M.: The topological asymptotic for PDE systems: the elasticity case. SIAM J. Control Optim. 39(6), 1756–1778 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  10. Glowinski, R., Li, C.H., Lions, J.-L.: A numerical approach to the exact boundary controllability of the wave equation (I). Dirichlet controls: description of the numerical methods. Int. J. Numer. Methods Eng. 27(3), 623–636 (1989)

    Article  MATH  Google Scholar 

  11. Henrot, A., Pierre, M.: Variation et Optimisation de Formes: une Analyse Géométrique. Mathématiques et Applications, vol. 48. Springer, Berlin (2005)

    MATH  Google Scholar 

  12. Lions, J.L.: Contrôlabilité Exacte, Stabilisation et Perturbations de Systèmes Distribués, Tome 1. Masson, RMA 8, Paris (1988)

    Google Scholar 

  13. Münch, A.: A uniformly controllable and implicit scheme for the 1-D wave equation. Math. Model. Numer. Anal. 39(2), 377–418 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  14. Münch, A.: Optimal design of the support of the control for the 2-D wave equation: a numerical method. Int. J. Numer. Anal. Model. 5(2), 331–351 (2008)

    MATH  Google Scholar 

  15. Münch, A.: Optimal internal stabilization of a damped wave equation by a level set approach. Prépublication du laboratoire de Mathématiques de Besancon, 2005/1. Downlable at www-math.univ-fcomte.fr/amunch/research.htm

  16. Münch, A., Pedregal, P., Periago, F.: Optimal design of the damping set for the stabilization of the wave equation. J. Differ. Equ. 231(1), 331–358 (2006)

    Article  MATH  Google Scholar 

  17. Sokolowski, J., Zochowski, A.: On the topological derivative in shape optimization. SIAM J. Control Optim. 37(4), 1251–1272 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  18. Osher, S.J., Fedkiw, R.: Level set Methods and Dynamics Implicit Surfaces. Applied Mathematics Sciences, vol. 153. Springer, Berlin (2002)

    Google Scholar 

  19. Sethian, J.A.: Level set Methods: Evolving Interfaces in Geometry, Fluid Mechanics, Computer Vision, and Materials Science. Cambridge University Press, Cambridge (1996)

    MATH  Google Scholar 

  20. Wang, M.Y., Wang, X., Guo, D.: A level set method for structural topology optimization. Comput. Methods Appl. Mech. Eng. 192, 227–246 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  21. Zuazua, E.: Propagation, observation, control and numerical approximation of waves approximated by finite difference methods. SIAM Rev. 47(2), 197–243 (2005)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnaud Münch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Münch, A. Optimal location of the support of the control for the 1-D wave equation: numerical investigations. Comput Optim Appl 42, 443–470 (2009). https://doi.org/10.1007/s10589-007-9133-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-007-9133-x

Keywords

Navigation