Skip to main content
Log in

Convex constrained optimization for large-scale generalized Sylvester equations

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

We propose and study the use of convex constrained optimization techniques for solving large-scale Generalized Sylvester Equations (GSE). For that, we adapt recently developed globalized variants of the projected gradient method to a convex constrained least-squares approach for solving GSE. We demonstrate the effectiveness of our approach on two different applications. First, we apply it to solve the GSE that appears after applying left and right preconditioning schemes to the linear problems associated with the discretization of some partial differential equations. Second, we apply the new approach, combined with a Tikhonov regularization term, to restore some blurred and highly noisy images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahmed, N.V., Teo, K.L.: Optimal Control of Distributed Parameter Systems. North-Holland, Amsterdam (1981)

    MATH  Google Scholar 

  2. Anderson, G.L., Netravali, A.N.: Image restoration based on a subjective criterion. IEEE Trans. Syst. Man Cybern. 6, 845–856 (1976)

    Article  Google Scholar 

  3. Bartels, R.H., Stewart, G.W.: Solution of the matrix equation AX+XB=C. Commun. ACM 15, 820–826 (1972)

    Article  Google Scholar 

  4. Barzilai, J., Borwein, J.M.: Two point step size gradient methods. IMA J. Numer. Anal. 8, 141–148 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bertsekas, D.P.: On The Goldstein-Levitin-Polyak gradient projection method. IEEE Trans. Automat. Contr. 21, 174–184 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  6. Birgin, E.G., Martínez, J.M., Raydan, M.: Nonmonotone spectral projected gradient methods on convex sets. SIAM J. Opt. 10, 1196–1211 (2000)

    Article  MATH  Google Scholar 

  7. Birgin, E.G., Martínez, J.M., Raydan, M.: Algorithm 813: SPG—software for convex-constrained optimization. ACM Trans. Math. Softw. 27, 340–349 (2001)

    Article  MATH  Google Scholar 

  8. Birgin, E.G., Martínez, J.M., Raydan, M.: Inexact spectral gradient method for convex-constrained optimization. IMA J. Numer. Anal. 23, 539–559 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  9. Bouhamidi, A., Jbilou, K.: Sylvester Tikhonov-regularization methods in image restoration. J. Comput. Math. 206, 86–98 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  10. Boyle, J.P., Dykstra, R.L.: A method for finding projections onto the intersection of convex sets in Hilbert spaces. Lect. Notes Stat. 37, 28–47 (1986)

    MathSciNet  Google Scholar 

  11. Calvetti, D., Levenberg, N., Reichel, L.: Iterative methods for XAXB=C. J. Comput. Appl. Math. 86, 73–101 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  12. Calvetti, D., Golub, G.H., Reichel, L.: Estimation of the L-curve via Lanczos bidiagonalization. BIT 39, 603–619 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  13. Calvetti, D., Lewis, B., Reichel, L.: GMRES, L-curves and discrete ill-posed problems. BIT 42, 44–65 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  14. Castellanos, J.L., Gómez, S., Guerra, V.: The triangle method for finding the corner of the L-curve. Appl. Numer. Math. 43, 359–373 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  15. Chan, T.F., Shen, J.: Image Processing and Analysis: Variational, PDE, Wavelet, and Stochastic Methods. SIAM, Philadelphia (2005)

    MATH  Google Scholar 

  16. Dai, Y.H., Liao, L.Z.: R-linear convergence of the Barzilai and Borwein gradient method. IMA J. Numer. Anal. 22, 1–10 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  17. Datta, B.N.: Numerical Methods for Linear Control Systems Design and Analysis. Elsevier, Amsterdam (2003)

    Google Scholar 

  18. Demmel, J.W., Kågström, B.: Accurate solutions of ill-posed problems in control theory. SIAM J. Matrix Anal. Appl. 9, 126–145 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  19. Dou, A.: Method of undetermined coefficients in linear differential systems and the matrix equation YAAY=F. SIAM J. Appl. Math. 14, 691–696 (1966)

    Article  MATH  MathSciNet  Google Scholar 

  20. El Guennouni, A., Jbilou, K., Riquet, A.J.: Block Krylov subspace methods for solving large Sylvester equations. Numer. Algorithms 29, 75–96 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  21. Epton, M.A.: Methods for the solution of AXDBXC=E and its application in the numerical solution of implicit ordinary differential equations. BIT 20, 341–345 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  22. Fletcher, R.: Low storage methods for unconstrained optimization. Lect. Appl. Math. 26, 165–179 (1990)

    MathSciNet  Google Scholar 

  23. Fletcher, R.: On the Barzilai-Borwein method. In: Qi, L., Teo, K.L., Yang, X.Q. (eds.) Optimization and Control with Applications, pp. 235–256. Springer, Berlin (2005)

    Chapter  Google Scholar 

  24. Goldstein, A.A.: Convex Programming in Hilbert Space. Bull. Am. Math. Soc. 70, 709–710 (1964)

    Article  MATH  Google Scholar 

  25. Golub, G.H., von Matt, U.: Tikhonov regularization for large scale problems. In: Golub, G.H., Lui, S.H., Luk, F., Plemmons, R. (eds.) Workshop on Scientific Computing, pp. 3–26. Springer, New York (1997)

    Google Scholar 

  26. Golub, G.H., Heath, M., Wahba, G.: Generalized cross-validation as a method for choosing a good ridge parameter. Technometrics 21, 215–223 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  27. Golub, G.H., Nash, S., Van Loan, C.: A Hessenberg-Schur method the problem AX+XB=C. IEEE Trans. Automat. Contr. AC 24, 909–913 (1979)

    Article  MATH  Google Scholar 

  28. Grippo, L., Lampariello, F., Lucidi, S.: A nonmonotone line search technique for Newton’s method. SIAM J. Numer. Anal. 23, 707–716 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  29. Hammarling, S.J.: Numerical solution of the stable, nonnegative definite Lyapunov equations. IMA J. Numer. Anal. 2, 303–323 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  30. Hanke, M., Hansen, P.C.: Regularization methods for large-scale problems. Surv. Math. Ind. 3, 253–315 (1993)

    MATH  MathSciNet  Google Scholar 

  31. Hansen, P.C.: Analysis of discrete ill-posed problems by means of the L-curve. SIAM Rev. 34, 561–580 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  32. Hansen, P.C., Nagy, J.G., O’Leary, D.P.: Deblurring Images: Matrices, Spectra, and Filtering. SIAM, Philadelphia (2006)

    MATH  Google Scholar 

  33. Hu, D.Y., Reichel, L.: Krylov subspace methods for the Sylvester equation. Linear Algebra Appl. 174, 283–314 (1992)

    Article  MathSciNet  Google Scholar 

  34. Jaimoukha, I.M., Kasenally, E.M.: Krylov subspace methods for solving large Lyapunov equations. SIAM J. Matrix Anal. Appl. 31, 227–251 (1994)

    MATH  MathSciNet  Google Scholar 

  35. Jbilou, K.: Low rank approximate solutions to large Sylvester matrix equations. Appl. Math. Comput. 177, 365–376 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  36. Jbilou, K., Riquet, A.: Projection methods for large Lyapunov matrix equations. Linear Algebra Appl. 415, 344–358 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  37. Jbilou, K., Messaoudi, A., Sadok, H.: Global FOM and GMRES algorithms for matrix equations. Appl. Numer. Math. 31, 49–63 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  38. La Cruz, W., Martínez, J.M., Raydan, M.: Spectral residual method without gradient information for solving large-scale nonlinear systems of equations. Math. Comput. 75, 1449–1466 (2006)

    Article  Google Scholar 

  39. Levitin, E.S., Polyak, B.T.: Constrained minimization problems. U.S.S.R. Comput. Math. Math. Phys. 6, 1–50 (1966)

    Article  Google Scholar 

  40. Lions, J.L.: Optimal Control of Systems Governed by Partial Differential Equations. Springer, Berlin (1971)

    MATH  Google Scholar 

  41. Lucy, L.B.: An iterative technique for the rectification of observed distributions. Astron. J. 79, 745–754 (1974)

    Article  Google Scholar 

  42. Monsalve, M.: Block linear method for large scale Sylvester equations. Comput. Appl. Math. 27, 47–59 (2008)

    MATH  MathSciNet  Google Scholar 

  43. Raydan, M.: On the Barzilai and Borwein choice of steplength for the gradient method. IMA J. Numer. Anal. 13, 321–326 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  44. Richardson, W.H.: Bayesian-based iterative method of image restoration. J. Opt. Soc. Am. 62, 55–59 (1972)

    Article  Google Scholar 

  45. Simoncini, V.: On the numerical solution of AXXB=C. BIT 36, 814–830 (1996)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Raydan.

Additional information

The research of M. Raydan was partially supported by USB and the Scientific Computing Center at UCV.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bouhamidi, A., Jbilou, K. & Raydan, M. Convex constrained optimization for large-scale generalized Sylvester equations. Comput Optim Appl 48, 233–253 (2011). https://doi.org/10.1007/s10589-009-9253-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-009-9253-6

Keywords

Navigation