Skip to main content
Log in

Adjoint IMEX-based schemes for control problems governed by hyperbolic conservation laws

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

Starting from relaxation schemes for hyperbolic conservation laws we derive continuous and discrete schemes for optimization problems subject to nonlinear, scalar hyperbolic conservation laws. We discuss properties of first- and second-order discrete schemes and show their relations to existing results. In particular, we introduce first and second-order relaxation and relaxed schemes for both adjoint and forward equations. We give numerical results including tracking type problems with non-smooth desired states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Areba-Driollet, D., Natalini, R.: Convergence of relaxation schemes for conservation laws. Appl. Anal. 61(1), 163–193 (1996)

    Article  MathSciNet  Google Scholar 

  2. Armbruster, D., Marthaler, D., Ringhofer, C., Kempf, K., Jo, T.C.: A continuum model for a re-entrant factory. Oper. Res. 54(5), 933–950 (2006)

    Article  MATH  Google Scholar 

  3. Banda, M.K., Seaïd, M.: Higher-order relaxation schemes for hyperbolic systems of conservation laws. J. Numer. Math. 13(3), 171–196 (2005). doi:10.1163/156939505774286102

    Article  MathSciNet  MATH  Google Scholar 

  4. Banda, M.K., Seaïd, M.: Relaxation WENO schemes for multidimensional hyperbolic systems of conservation laws. Numer. Methods Partial Differ. Equ. 23(5), 1211–1234 (2007). doi:10.1002/num.20218

    Article  MATH  Google Scholar 

  5. Bianchini, S.: On the shift differentiability of the flow generated by a hyperbolic system of conservation laws. Discrete Contin. Dyn. Syst. 6(2), 329–350 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bouchut, F., James, F.: One-dimensional transport equations with discontinuous coefficients. Nonlinear Anal. 32(7), 891–933 (1998). doi:10.1016/S0362-546X(97)00536-1

    Article  MathSciNet  MATH  Google Scholar 

  7. Bouchut, F., James, F.: Differentiability with respect to initial data for a scalar conservation law. In: Hyperbolic Problems: Theory, Numerics, Applications, vol. I, Zürich, 1998. Int. Ser. Numer. Math., vol. 129, pp. 113–118. Birkhäuser, Basel (1999)

    Chapter  Google Scholar 

  8. Bouchut, F., James, F.: Duality solutions for pressureless gases, monotone scalar conservation laws, and uniqueness. Commun. Partial Differ. Equ. 24(11–12), 2173–2189 (1999). doi:10.1080/03605309908821498

    MathSciNet  MATH  Google Scholar 

  9. Brenier, Y., Natalini, R., Puel, M.: On a relaxation approximation of the incompressible Navier-Stokes equations. Proc. Am. Math. Soc. 132, 1021 (2003)

    Article  MathSciNet  Google Scholar 

  10. Bressan, A., Guerra, G.: Shift-differentiability of the flow generated by a conservation law. Discrete Contin. Dyn. Syst. 3(1), 35–58 (1997)

    MathSciNet  MATH  Google Scholar 

  11. Bressan, A., Lewicka, M.: Shift differentials of maps in BV spaces. In: Nonlinear Theory of Generalized Functions, Vienna, 1997. Chapman & Hall/CRC Res. Notes Math., vol. 401, pp. 47–61. Chapman & Hall/CRC, Boca Raton (1999)

    Google Scholar 

  12. Bressan, A., Marson, A.: A variational calculus for discontinuous solutions to conservation laws. Commun. Partial Differ. Equ. 20, 1491–1552 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  13. Bressan, A., Shen, W.: Optimality conditions for solutions to hyperbolic balance laws. Control methods in PDE-dynamical systems. Contemp. Math. 426, 129–152 (2007)

    Article  MathSciNet  Google Scholar 

  14. Calamai, P.H., Moré, J.J.: Projected gradient methods for linearly constrained problems. Math. Program. 39, 93–116 (1987). doi:10.1007/BF02592073

    Article  MATH  Google Scholar 

  15. Colombo, R.M., Guerra, G., Herty, M., Schleper, V.: Optimal control in networks of pipes and canals. Tech. Rep. 3 (2009). doi:10.1137/080716372

  16. Gottlieb, S., Shu, C.W., Tadmor, E.: Strong stability preserving high-order time discretization methods. SIAM Rev. 43, 89–112 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hager, W.W.: Runge-Kutta methods in optimal control and the transformed adjoint system. Numer. Math. 87, 247–282 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  18. Jin, S., Xin, Z.: The relaxation schemes for systems of conservation laws in arbitrary space dimensions. Commun. Pure Appl. Math. 48, 235–276 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kelley, C.: Iterative Methods for Optimization. Frontiers in Applied Mathematics. Society for Industrial and Applied Mathematics, Philadelphia (1999)

    Book  MATH  Google Scholar 

  20. Marca, L., Armbruster, M., Herty, D., Ringhofer, M.: Control of continuum models of production systems. IEEE Trans. Autom. Control (2011, to appear)

  21. Liu, Z., Sandu, A.: On the properties of discrete adjoints of numerical methods for the advection equation. Int. J. Numer. Methods Fluids 56, 769–803 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Natalini, R.: Convergence to equilibrium for the relaxation approximations of conservation laws. Commun. Pure Appl. Math. 49(8), 795–823 (1996). doi:10.1002/(SICI)1097-0312(199608)49:8<795::AID-CPA2>3.0.CO;2-3

    Article  MathSciNet  MATH  Google Scholar 

  23. Natalini, R., Terracina, A.: Convergence of a relaxation approximation to a boundary value problem for conservation laws. Commun. Partial Differ. Equ. 26(7–8), 1235–1252 (2001). doi:10.1081/PDE-100106133

    Article  MathSciNet  MATH  Google Scholar 

  24. Pareschi, L., Russo, G.: Implicit-Explicit Runge-Kutta schemes for stiff systems of differential equations. In: Trigiante, B. (ed.) Recent Trends in Numerical Analysis, vol. 3, pp. 269–284 (2000)

  25. Spellucci, P.: Numerical Methods of Nonlinear Optimization. (Numerische Verfahren der nichtlinearen Optimierung). ISNM Lehrbuch. Birkhäuser, Basel (1993)

    MATH  Google Scholar 

  26. Ulbrich, S.: Optimal control of nonlinear hyperbolic conservation laws with source terms. Technische Universitaet Muenchen (2001)

  27. Ulbrich, S.: A sensitivity and adjoint calculus for discontinuous solutions of hyperbolic conservation laws with source terms. SIAM J. Control Optim. 41, 740 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  28. Ulbrich, S.: Adjoint-based derivative computations for the optimal control of discontinuous solutions of hyperbolic conservation laws. Syst. Control Lett. 3, 309 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Herty.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Banda, M.K., Herty, M. Adjoint IMEX-based schemes for control problems governed by hyperbolic conservation laws. Comput Optim Appl 51, 909–930 (2012). https://doi.org/10.1007/s10589-010-9362-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-010-9362-2

Keywords

Navigation