Skip to main content
Log in

Interior point methods for equilibrium problems

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

In the present paper we discuss three methods for solving equilibrium-type fixed point problems. Concentrating on problems whose solutions possess some stability property, we establish convergence of these three proximal-like algorithms that promise a very high numerical tractability and efficiency. For example, due to the implemented application of zone coercive Bregman functions, all these methods allow to treat the generated subproblems as unconstrained and, partly, explicitly solvable ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Algorithm 1
Algorithm 2
Algorithm 3

Similar content being viewed by others

Notes

  1. We do not distinguish between “solution”, “fixed point” and “equilibrium” unless this is of importance.

  2. A definition of such functions including some remarks is given below.

  3. The parameters δ k will allow some inexactness in the solution of the subproblems, and ε k will be the parameter for some ε-subdifferential. These issues will get more clear in the introduction of the methods below, but for consistency reasons, the related assumptions are listed here.

  4. The parameters χ k will play the role of some regularization parameters which will be more clear in the introduction of the methods below, but, again, for consistency reasons, the related assumptions are listed here.

  5. \(\mathcal{F}(x,y) + \mathcal{F}(y,x) \leq\mathcal {F}(x,x) + \mathcal{F}(y,y)\) for all x,yK.

  6. To be more precise, we shall give two remarks. The first one is on stability of the equilibrium: The variational inequality does not provide a stable solution, but as ∇h is Lipschitz continuous, this does not constitute a problem here. The second one is on the type of additional assumption: It is known for variational inequalities that a stronger monotonicity condition is needed to ensure convergence of Algorithm 2, but obviously condition (S) is exclusively related to smoothness. In turn, Korpelevich’s extragradient method does not necessarily require a stronger monotonicity assumption, but a kind of additional smoothness.

References

  1. Auslender, A., Teboulle, M., Ben-Tiba, S.: A logarithmic-quadratic proximal method for variational inequalities. Comput. Optim. Appl. 12(1–3), 31–40 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  2. Blum, E., Oettli, W.: From optimization and variational inequalities to equilibrium problems. Math. Stud. 63(1–4), 123–145 (1994)

    MathSciNet  MATH  Google Scholar 

  3. Bonnans, J.F., Shapiro, A.: Perturbation Analysis of Optimization Problems. Springer, New York (2000)

    MATH  Google Scholar 

  4. Burachik, R.S., Iusem, A.N.: A generalized proximal point algorithm for the variational inequality problem in Hilbert space. SIAM J. Optim. 8(1), 197–216 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cavazutti, E., Pappalardo, M., Passacantando, M.: Nash equilibria, variational inequalities and dynamical systems. J. Optim. Theory Appl. 114(3), 491–506 (2002)

    Article  MathSciNet  Google Scholar 

  6. Censor, Y., Zenios, S.A.: Proximal minimization algorithm with D-functions. J. Optim. Theory Appl. 73(3), 451–464 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  7. Censor, Y., Iusem, A.N., Zenios, S.A.: An interior point method with Bregman functions for the variational inequality problem with paramonotone operators. Math. Program. 81(3), 373–400 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen, G., Teboulle, M.: Convergence analysis of a proximal-like minimization algorithm using Bregman functions. SIAM J. Optim. 3(3), 538–543 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cohen, G.: Auxiliary problem principle extended to variational inequalities. J. Optim. Theory Appl. 59(2), 325–333 (1988)

    MathSciNet  MATH  Google Scholar 

  10. Eckstein, J.: Nonlinear proximal point algorithms using Bregman functions, with application to convex programming. Math. Oper. Res. 18(1), 202–226 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  11. Facchinei, F., Kanzow, C.: Generalized Nash equilibrium problems. 4OR 5(3), 173–210 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Facchinei, F., Pang, J.-S.: Finite-Dimensional Variational Inequalities and Complementarity Problems. Springer, New York (2003)

    Google Scholar 

  13. Flåm, S.D.: Paths to constrained Nash equilibria. Appl. Math. Optim. 27(3), 275–289 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  14. Flåm, S.D.: Learning equilibrium play: a myopic approach. Comput. Optim. Appl. 14(1), 87–102 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  15. Flåm, S.D., Antipin, A.S.: Equilibrium programming using proximal-like algorithms. Math. Program. 77(1), 29–41 (1997)

    Google Scholar 

  16. Hiriart-Urruty, J.-B., Lemarechal, C.: Convex Analysis and Minimization Algorithms. Springer, Berlin (1993)

    Google Scholar 

  17. Iusem, A.N.: On the maximal monotonicity of diagonal subdifferential operators. J. Convex Anal. 18(2), 489–503 (2011)

    MathSciNet  MATH  Google Scholar 

  18. Iusem, A.N., Nasri, M.: Inexact Proximal Point methods for equilibrium problems in Banach spaces. Numer. Funct. Anal. Optim. 28(11–12), 1279–1308 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  19. Iusem, A.N., Sosa, W.: On the Proximal Point Method for equilibrium problems in Hilbert spaces. Optimization 59(8), 1259–1274 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Iusem, A.N., Kassay, G., Sosa, W.: On certain conditions for the existence of solutions of equilibrium problems. Math. Program., Ser. B 116(1–2), 259–273 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kaplan, A., Tichatschke, R.: On inexact generalized proximal methods with a weakened error tolerance criterion. Optimization 53(1), 3–17 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kaplan, A., Tichatschke, R.: Note on the paper: Interior proximal method for variational inequalities on non-polyhedral sets. Discuss. Math., Differ. Incl. Control Optim. 30, 51–59 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Konnov, I.V.: Application of the Proximal Point Method to nonmonotone equilibrium problems. J. Optim. Theory Appl. 119(2), 317–333 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  24. Korpelevich, G.M.: The extragradient method for finding saddle points and other problems. Èkon. Mat. Metody 12, 747–756 (1976)

    MATH  Google Scholar 

  25. Krawczyk, J.B.: Numerical solutions to coupled-constraint (or generalised Nash) equilibrium problems. Comput. Manag. Sci. 4(2), 183–204 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  26. Krawczyk, J.B., Uryasev, S.: Relaxation algorithms to find Nash equilibria with economic applications. Environ. Model. Assess. 5(1), 63–73 (2000)

    Article  Google Scholar 

  27. Kubota, K., Fukushima, M.: Gap function approach to the Generalized Nash equilibrium problem. J. Optim. Theory Appl. 144(3), 511–531 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  28. Langenberg, N.: Interior proximal methods for equilibrium programming. Part I. Optimization (to appear). doi:10.1080/02331934.2011.625028

  29. Langenberg, N.: Interior proximal methods for equilibrium programming. Part II. Optimization (to appear). doi:10.1080/02331934.2011.627334

  30. Langenberg, N.: Pseudomonotone operators and the Bregman Proximal Point Algorithm. J. Glob. Optim. 47(4), 537–555 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  31. Mastroeni, G.: On auxiliary principle for equilibrium problems. In: Daniele, P., Giannessi, F., Maugeri, A. (eds.) Equilibrium Problems and Variational Models, pp. 289–298. Kluwer, Dordrecht (2003)

    Chapter  Google Scholar 

  32. Noor, M.A.: Auxiliary principle technique for equilibrium problems. J. Optim. Theory Appl. 122(2), 371–386 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  33. Van Nguyen, T.T., Strodiot, J.-J., Nguyen, V.H.: A bundle method for solving equilibrium problems. Math. Program., Ser. B 116(1–2), 529–552 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  34. Van Nguyen, T.T., Strodiot, J.-J., Nguyen, V.H.: The interior proximal extragradient method for solving equilibrium problems. J. Glob. Optim. 44(2), 175–192 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  35. von Heusinger, A., Kanzow, C.: Optimization reformulations of the Generalized Nash Equilibrium Problem using Nikaido-Isoda-type functions. Comput. Optim. Appl. 43(3), 353–377 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author is grateful to one reviewer for his or her constructive remarks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nils Langenberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Langenberg, N. Interior point methods for equilibrium problems. Comput Optim Appl 53, 453–483 (2012). https://doi.org/10.1007/s10589-011-9450-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-011-9450-y

Keywords

Navigation