Skip to main content
Log in

On regularity conditions for complementarity problems

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

In the context of complementarity problems, various concepts of solution regularity are known, each of them playing a certain role in the related theoretical and algorithmic developments. Despite the existence of rich literature on this subject, it appears that the exact relations between some of these regularity concepts remained unknown. In this note, we not only summarize the existing results on the subject but also establish the missing relations filling all the gaps in the current understanding of how different regularity concepts relate to each other. In particular, we demonstrate that strong regularity is in fact equivalent to nonsingularity of all matrices in the natural outer estimates of the generalized Jacobians of the most widely used residual mappings for complementarity problems. On the other hand, we show that CD-regularity of the natural residual mapping does not imply even BD-regularity of the Fischer–Burmeister residual mapping. As a result, we provide the complete picture of relations between the most important regularity conditions for mixed complementarity problems, with a special emphasis on those conditions used to justify the related numerical methods. A special attention is paid to the particular cases of a nonlinear complementarity problem and of a Karush–Kuhn–Tucker system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Billups, S.C.: Algorithms for complementarity problems and generalized equations. Technical Report 95-14, Computer Sciences Department, University of Wisconsin, Madison (August 1995). Ph.D. thesis

  2. Bonnans, J.F.: Local analysis of Newton-type methods for variational inequalities and nonlinear programming. Appl. Math. Optim. 29, 161–186 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  3. Clarke, F.H.: Optimization and Nonsmooth Analysis. Wiley, New York (1983)

    MATH  Google Scholar 

  4. Daryina, A.N., Izmailov, A.F., Solodov, M.V.: A class of active-set Newton methods for mixed complementarity problems. SIAM J. Optim. 15, 409–429 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  5. Daryina, A.N., Izmailov, A.F., Solodov, M.V.: Mixed complementary problems: regularity, estimates of the distance to the solution, and Newton’s methods. Comput. Math. Math. Phys. 44, 45–61 (2004)

    MathSciNet  Google Scholar 

  6. Dontchev, A.L., Rockafellar, R.T.: Implicit Functions and Solution Mappings. Springer, New York (2009)

    Book  MATH  Google Scholar 

  7. Facchinei, F., Fischer, A., Kanzow, C.: A semismooth Newton method for variational inequalities: the case of box constraints. In: Ferris, M.C., Pang, J.-S. (eds.) Complementarity and Variational Problems: State of the Art, pp. 76–90. SIAM, Philadelphia (1997)

    Google Scholar 

  8. Facchinei, F., Fischer, A., Kanzow, C.: On the accurate identification of active constraints. SIAM J. Optim. 9, 14–32 (1999)

    Article  MathSciNet  Google Scholar 

  9. Facchinei, F., Pang, J.-S.: Finite-Dimensional Variational Inequalities and Complementarity Problems. Springer, New York (2003)

    Google Scholar 

  10. Ferris, M.C., Kanzow, C., Munson, T.S.: Feasible descent algorithms for mixed complementarity problems. Math. Program. 86, 475–497 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  11. Ferris, M.C., Pang, J.-S.: Engineering and economic applications of complementarity problems. SIAM Rev. 39, 669–713 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  12. Harker, P.T., Pang, J.-S.: Finite-dimensional variational inequality problems: a survey of theory, algorithms and applications. Math. Program. 48, 161–220 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  13. Izmailov, A.F., Solodov, M.V.: Karush-Kuhn-Tucker systems: regularity conditions, error bounds and a class of Newton-type methods. Math. Program. 95, 631–650 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  14. Josephy, N.H.: Newton’s method for generalized equations. Technical Summary Report no. 1965, Mathematics Research Center, University of Wisconsin, Madison (1979)

  15. Kanzow, C., Fukishima, M.: Solving box constrained variational inequalities by using the natural residual with D-gap function globalization. Oper. Res. Lett. 23, 45–51 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  16. Kanzow, C., Kleinmichel, H.: A new class of semismooth Newton-type methods for nonlinear complementarity problems. Comput. Optim. Appl. 11, 227–251 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  17. Kummer, B.: Newton’s method for nondifferentiable functions. In: Guddat, J., Bank, B., Hollatz, H., Kall, P., Klatte, D., Kummer, B., Lommalzsch, K., Tammer, L., Vlach, M., Zimmerman, K. (eds.) Advances in Mathematical Optimization, vol. 45, pp. 114–125. Akademie-Verlag, Berlin (1988)

    Google Scholar 

  18. Kummer, B.: Newton’s method based on generalized derivatives for nonsmooth functions. In: Oettli, W., Pallaschke, D. (eds.) Advances in Optimization, pp. 171–194. Springer, Berlin (1992)

    Chapter  Google Scholar 

  19. De Luca, T., Facchinei, F., Kanzow, C.: A theoretical and numerical comparison of some semismooth algorithms for complementarity problems. Comput. Optim. Appl. 16, 173–205 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  20. Ouellette, D.V.: Schur complements and statistics. Linear Algebra Appl. 36, 187–295 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  21. Pang, J.-S., Gabriel, S.A.: NE/SQP: a robust algorithm for the nonlinear complementarity problem. Math. Program. 60, 295–338 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  22. Pourciau, B.H.: Analysis and optimization of Lipschitz continuous mappings. Engineering and economic applications of complementarity problems. JOTA 22, 311–351 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  23. Qi, L.: Convergence analysis of some algorithms for solving nonsmooth equations. Math. Oper. Res. 18, 227–244 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  24. Qi, L., Sun, J.: A nonsmooth version of Newton’s method. Math. Program. 58, 353–367 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  25. Robinson, S.M.: Strongly regular generalized equations. Math. Oper. Res. 5, 43–62 (1980)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank the anonymous referees whose useful suggestions considerably improved the presentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. F. Izmailov.

Additional information

This research is supported by the Russian Foundation for Basic Research Grants 12-01-31025 and 12-01-33023.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Izmailov, A.F., Kurennoy, A.S. On regularity conditions for complementarity problems. Comput Optim Appl 57, 667–684 (2014). https://doi.org/10.1007/s10589-013-9604-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-013-9604-1

Keywords

Navigation