Skip to main content
Log in

Curvature integrals and iteration complexities in SDP and symmetric cone programs

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

In this paper, we study iteration complexities of Mizuno-Todd-Ye predictor-corrector (MTY-PC) algorithms in SDP and symmetric cone programs by way of curvature integrals. The curvature integral is defined along the central path, reflecting the geometric structure of the central path. Integrating curvature along the central path, we obtain a precise estimate of the number of iterations to solve the problem. It has been shown for LP that the number of iterations is asymptotically precisely estimated with the integral divided by \(\sqrt{\beta}\), where β is the opening parameter of the neighborhood of the central path in MTY-PC algorithms. Furthermore, this estimate agrees quite well with the observed number of iterations of the algorithm even when β is close to one and when applied to solve large LP instances from NETLIB. The purpose of this paper is to develop direct extensions of these two results to SDP and symmetric cone programs. More specifically, we give concrete formulas for curvature integrals in SDP and symmetric cone programs and give asymptotic estimates for iteration complexities. Through numerical experiments with large SDP instances from SDPLIB, we demonstrate that the number of iterations is explained quite well with the integral even for a large step size which is enough to solve practical large problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Amari, S.-i., Nagaoka, H.: Methods of Information Geometry. Translations of Mathematical Monographs, vol. 191. American Mathematical Society, Providence (2000). Translated from the 1993 Japanese original by Daishi Harada

    MATH  Google Scholar 

  2. Borchers, B.: SDPLIB 1.2, library of semidefinite programming test problems. Optim. Methods Softw. 11/12(1–4), 683–690 (1999). Interior point methods

    Article  MathSciNet  Google Scholar 

  3. Demmel, J.W.: Applied Numerical Linear Algebra. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (1997)

    Book  MATH  Google Scholar 

  4. Faraut, J., Korányi, A.: Analysis on Symmetric Cones. Oxford Mathematical Monographs. The Clarendon Press Oxford University Press, New York (1994). Oxford Science Publications.

    MATH  Google Scholar 

  5. Faybusovich, L.: Linear systems in Jordan algebras and primal-dual interior-point algorithms. J. Comput. Appl. Math. 86(1), 149–175 (1997). Special issue dedicated to William B. Gragg (Monterey, CA, 1996)

    Article  MATH  MathSciNet  Google Scholar 

  6. Kakihara, S., Ohara, A., Tsuchiya, T.: Information geometry and primal-dual interior-point algorithms. Optimization Online (2010)

  7. Kakihara, S., Ohara, A., Tsuchiya, T.: Information geometry and interior-point algorithms in semidefinite programs and symmetric cone programs. J. Optim. Theory Appl. 157(3), 749–780 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  8. Karmarkar, N.: Riemannian geometry underlying interior-point methods for linear programming. In: Mathematical Developments Arising from Linear Programming (Brunswick, ME, 1988), Contemp. Math., vol. 114, pp. 51–75. American Mathematical Society, Providence (1990)

    Chapter  Google Scholar 

  9. Monteiro, R.D.C., Adler, I.: Interior path following primal-dual algorithms. I. Linear programming. Math. Program. 44(1, Ser. A), 27–41 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  10. Monteiro, R.D.C., Tsuchiya, T.: Polynomial convergence of a new family of primal-dual algorithms for semidefinite programming. SIAM J. Optim. 9(3), 551–577 (1999). (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  11. Monteiro, R.D.C., Tsuchiya, T.: A strong bound on the integral of the central path curvature and its relationship with the iteration-complexity of primal-dual path-following LP algorithms. Math. Program. 115(1, Ser. A), 105–149 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  12. Monteiro, R.D.C., Zhang, Y.: A unified analysis for a class of long-step primal-dual path-following interior-point algorithms for semidefinite programming. Math. Program. 81(3, Ser. A), 281–299 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  13. Muramatsu, M.: On a commutative class of search directions for linear programming over symmetric cones. J. Optim. Theory Appl. 112(3), 595–625 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  14. Ohara, A., Tsuchiya, T.: An information geometric approach to polynomial-time interior-point algorithms: complexity bound via curvature integral. In: Research Memorandum the Institute of Statistical Mathematics, p. 1055 (2007)

    Google Scholar 

  15. Schmieta, S.H., Alizadeh, F.: Extension of primal-dual interior point algorithms to symmetric cones. Math. Program. 96(3, Ser. A), 409–438 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  16. Sonnevend, G., Stoer, J., Zhao, G.: On the complexity of following the central path of linear programs by linear extrapolation. II. Math. Program. 52(3, Ser. B), 527–553 (1992). 1991. Interior point methods for linear programming: theory and practice (Scheveningen, 1990)

    MathSciNet  Google Scholar 

  17. Todd, M.J., Toh, K.C., Tütüncü, R.H.: On the Nesterov-Todd direction in semidefinite programming. SIAM J. Optim. 8(3), 769–796 (1998) (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  18. Zhao, G., Stoer, J.: Estimating the complexity of a class of path-following methods for solving linear programs by curvature integrals. Appl. Math. Optim. 27(1), 85–103 (1993)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Professor Renato D.C. Monteiro of the School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, for his insightful discussion about the curvature integral I PD .

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Tsuchiya.

Additional information

T. Tsuchiya is supported in part with Grant-in-Aid for Scientific Research (B)20340024 from the Japan Society for the Promotion of Sciences.

Appendix

Appendix

In appendix, we lay out proofs of Lemma 3.5 and Lemma 3.7 used in the proof of Theorem 3.8.

Proof of Lemma 3.5

Let

$$ F_{w}\bigl(w'\bigr) = \begin{bmatrix} W_{P}(w') - W_{P}(w)\\ \mathcal {A}X' - b\\ \mathcal {A}^* y' + S' - C \end{bmatrix}. $$

Then, letting R=W P (w)/ν, we have

$$ F_{w}(w) = 0\quad \text{and}\quad F_{w}(w_\nu) = \begin{bmatrix} \nu (I - R)\\ 0\\ 0 \end{bmatrix}. $$

Hence, from the continuity of F w , it holds on the neighborhood of the central path that with constants C 1,C 2,

$$\begin{aligned} \lVert w - w_\nu\rVert =& C_1 \big\Vert F_{w}^{-1}(0) - F_{w}^{-1}\bigl(\bigl[\nu (I - R),0,0\bigr]^{T} \bigr)\big\Vert = C_2 \big\Vert \nu (I - R)\big\Vert _{F}\\ =& \mathcal {O}\bigl(\beta^2\bigr). \end{aligned}$$

 □

Proof of Lemma 3.7

Let

$$ \widetilde{\mathcal{A}} := \left ( \begin{array}{c@{\quad}c@{\quad}c} \mathcal{A} & 0 & 0\\ 0 & I & \mathcal{A}^*\\ E_{\nu} & F_{\nu} & 0 \end{array} \right ),\quad \widetilde{x} := \left [ \begin{array}{c} \operatorname {vec}(\Delta X_{\nu})\\ \operatorname {vec}(\Delta S_{\nu})\\ \Delta y_{\nu} \end{array} \right ],\quad \widetilde{b} := \left [ \begin{array}{c} 0\\ 0\\ \operatorname {vec}(\nu I) \end{array} \right ], $$
$$\begin{aligned} &\widetilde{\Delta \mathcal{A}} := \left ( \begin{array}{c@{\quad}c@{\quad}c} 0 & 0 & 0\\ 0 & 0 & 0\\ E - E_{\nu} & F - F_{\nu} & 0 \end{array} \right ),\quad \widetilde{\Delta x} := \left [ \begin{array}{c} \operatorname {vec}(\Delta X - \Delta X_{\nu})\\ \operatorname {vec}(\Delta S - \Delta S_{\nu})\\ \Delta y - \Delta y_{\nu} \end{array} \right ],\\ & \widetilde{\Delta b} := \left [ \begin{array}{c} 0\\ 0\\ \operatorname {vec}(\mathcal {H}_{p}(XS) - \nu I) \end{array} \right ], \end{aligned}$$

where

$$\begin{aligned} E_{\nu} :=& \frac{1}{2}\bigl(P_{\nu}^{-T}S_{\nu} \otimes P_{\nu} + P_{\nu}\otimes P_{\nu}^{-T}S_{\nu}\bigr), \quad F_{\nu} := \frac{1}{2}\bigl(P_{\nu}X_{\nu} \otimes P_{\nu}^{-T} + P_{\nu}^{-T}\otimes P_{\nu}X_{\nu} \bigr), \\ E :=& \frac{1}{2}\bigl(P^{-T}S\otimes P + P\otimes P^{-T}S\bigr),\quad F := \frac{1}{2}\bigl(PX\otimes P^{-T} + P^{-T}\otimes PX \bigr). \end{aligned}$$

Note that by conventions, we allow above formulations of operators and matrices. Then, by Lemma 3.6, we have

$$\begin{aligned} \lVert \widetilde{\Delta x}\rVert \leq \frac{\lVert \widetilde{\mathcal{A}}^{-1}\rVert }{1 - \lVert \widetilde{\mathcal{A}}^{-1}\rVert \lVert \widetilde{\Delta \mathcal{A}}\rVert } \bigl(\lVert \widetilde{\Delta b}\rVert + \lVert \widetilde{\Delta \mathcal{A}}\rVert \lVert \widetilde{x}\rVert \bigr). \end{aligned}$$
(71)

We first show that \({\lVert \widetilde{\Delta \mathcal{A}}\rVert }_{F} = \mathcal {O}(\beta^{2})\). We have

$$\begin{aligned} E - E_{\nu} =& \frac{1}{2} \bigl[\bigl(P^{-T}S\otimes P + P\otimes P^{-T}S\bigr) - \bigl(P_{\nu}^{-T}S_{\nu} \otimes P_{\nu} + P_{\nu}\otimes P_{\nu}^{-T}S_{\nu}\bigr)\bigr] \\ =& \frac{1}{2} \bigl[\bigl(P^{-T}S\otimes P - P_{\nu}^{-T}S_{\nu} \otimes P_{\nu}\bigr) + \bigl( P\otimes P^{-T}S - P_{\nu} \otimes P_{\nu}^{-T}S_{\nu}\bigr)\bigr] \\ =& \frac{1}{2} \bigl[\bigl(\bigl(P^{-T}-P_{\nu}^{-T} \bigr)S \otimes P + P_{\nu}^{-T} (S - S_{\nu}) \otimes P + \bigl(P_{\nu}^{-T} S_{\nu} \otimes (P - P_{\nu})\bigr) \bigr)\\ &{} + \bigl((P - P_{\nu})\otimes P^{-T}S + P_{\nu} \otimes \bigl(P^{-T}-P_{\nu}^{-T}\bigr)S + P_{\nu} \otimes P_{\nu}^{-T} (S - S_{\nu})\bigr) \bigr]. \end{aligned}$$

Since ∥S F , ∥S ν F , ∥P F , ∥P ν F are bounded on \(\mathcal {F}\), and there exists a constant C such that ∥PP ν F =Cww c F and \({\lVert w - w_{c}\rVert }_{F} = \mathcal {O}(\beta^{2})\) from Lemma 3.5, it follows that

$$ {\lVert E - E_{\nu}\rVert }_{F} = \mathcal {O}\bigl(\beta^2\bigr). $$

Similarly, we have \({\lVert F - F_{\nu}\rVert }_{F} = \mathcal {O}(\beta^{2})\). Thus we obtain

$$ {\lVert \widetilde{\Delta \mathcal{A}}\rVert }_{F} = \mathcal {O}\bigl(\beta^2\bigr). $$

Next, we show \(\lVert \widetilde{\Delta b}\rVert = \mathcal {O}(\beta^{2})\). Similarly, it is easy to see that

$$\begin{aligned} \big\Vert \mathcal {H}_p(XS) - \nu I\big\Vert _{F} =& \frac{1}{2}\big\Vert \bigl(PXSP^{-1} - \nu I\bigr) + \bigl(P^{-T}SXP^{T} - \nu I\bigr)\big\Vert _{F} \\ \leq& \frac{1}{2} \bigl[ \big\Vert PX^{1/2}\bigl(X^{1/2}SX^{1/2} - \nu I\bigr)X^{-1/2}P^{-1}\big\Vert _{F} \\ &{}+ \big\Vert P^{-T}X^{-1/2}\bigl(X^{1/2}SX^{1/2} - \nu I\bigr)X^{1/2}P^{T}\big\Vert _{F} \bigr] \\ \leq& \frac{1}{2} \bigl[ {\lVert P\rVert }_{F} \big\Vert X^{1/2}\big\Vert _{F} \big\Vert X^{1/2}SX^{1/2} - \nu I\big\Vert _{F} \big\Vert X^{-1/2}\big\Vert _{F} \big\Vert P^{-1}\big\Vert _{F} \\ &{}+ \big\Vert P^{-T}\big\Vert _{F} \big\Vert X^{-1/2}\big\Vert _{F} \big\Vert X^{1/2}SX^{1/2} - \nu I\big\Vert _{F} \big\Vert X^{1/2}\big\Vert _{F} \big\Vert P^{T}\big\Vert _{F} \bigr]\\ =& \mathcal{O} \bigl(\beta^2\bigr). \end{aligned}$$

The last equality comes from the fact that \({\lVert X^{1/2}SX^{1/2} - \nu I\rVert }_{F} = \mathcal {O}(\beta^{2})\) and ∥P F and ∥X −1/2 F are bounded on \(\mathcal {F}\).

Since \(\lVert \widetilde{\mathcal{A}}^{-1}\rVert \), \(\lVert \widetilde{x}\rVert \) are bounded, it follows from above discussion that \(\lVert \widetilde{\Delta x}\rVert = \mathcal {O}(\beta^{2})\), which implies that

$$ \big\Vert (\Delta X,\Delta y,\Delta S) - (\Delta X_{\nu}, \Delta y_{\nu},\Delta S_{\nu})\big\Vert _{F} = \mathcal{O}\bigl(\beta^2 \bigr). $$

 □

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kakihara, S., Ohara, A. & Tsuchiya, T. Curvature integrals and iteration complexities in SDP and symmetric cone programs. Comput Optim Appl 57, 623–665 (2014). https://doi.org/10.1007/s10589-013-9608-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-013-9608-x

Keywords

Navigation