Skip to main content
Log in

Determination of initial temperature in fast simulated annealing

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

In this paper, we propose a method of determining the initial temperature for continuous fast simulated annealing from the perspective of state variation. While the conventional method utilizes fitness variation, the proposed method additionally considers genotype variation. The proposed scheme is based on the fact that the annealing temperature, which includes the initial temperature, not only appears in the acceptance probability but serves as the scale parameter of a state generating probability distribution. We theoretically derive an expression for the probability of generating states to cover the state space in conjunction with the convergence property of the fast simulated annealing. We then numerically solve the expression to determine the initial temperature. We empirically show that the proposed method outperforms the conventional one in optimizing various benchmarking functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. See, for example, [21].

  2. See, for example, [25].

References

  1. Kirkpatrick, S., Gelatt, C., Vecchi, M.: Optimization by simulated annealing. Science 220, 671–680 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  2. Černý, V.: A thermodynamical approach to the traveling salesman problem: an efficient simulation algorithm. J. Optim. Theory Appl. 45, 41–51 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  3. Johnson, D., Aragon, C., Mcgeoch, L., Schevon, C.: Optimization simulated annealing: an experimental evaluation; Part I, graph partitioning. Oper. Res. 37, 865–891 (1989)

    Article  MATH  Google Scholar 

  4. Geman, S., Geman, D.: Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Trans. Pattern Anal. Mach. Intell. PAMI-6, 721–741 (1984)

    Article  Google Scholar 

  5. Szu, H., Hartley, R.: Fast simulated annealing. Phys. Lett. A 122, 157–162 (1987)

    Article  Google Scholar 

  6. Nascimento, V., Carvalho, V., de Castilho, C., Costa, B., Soares, E.: The fast simulated annealing algorithm applied to the search problem in LEED. Surf. Sci. 487, 15–27 (2001)

    Article  Google Scholar 

  7. Szu, H.: Automatic fault recognition by image correlation neural network techniques. IEEE Trans. Ind. Electron. 40, 197–208 (1993)

    Article  Google Scholar 

  8. Mageras, G., Mohan, R.: Application of fast simulated annealing to optimization of conformal radiation treatments. Med. Phys. 20, 639–647 (1993)

    Article  Google Scholar 

  9. Wang, Z., Hanson, J.: Codebook optimization by Cauchy annealing. In: The Proceedings of Global Telecommunications Conference, vol. 3, pp. 1974–1978 (1993)

    Chapter  Google Scholar 

  10. Ingber, L.: Very fast simulated re-annealing. Math. Comput. Model. 12, 967–973 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  11. Tsallis, C., Stariolo, D.: Generalized simulated annealing. Physica A 233, 395–406 (1996)

    Article  Google Scholar 

  12. Metropolis, N., et al.: Equations of state calculations by fast computing machines. J. Chem. Phys. 21, 1087–1092 (1953)

    Article  Google Scholar 

  13. Suman, B., Kumar, P.: A survey of simulated annealing as a tool for single and multiobjective optimization. J. Oper. Res. Soc. 57, 1143–1160 (2006)

    Article  MATH  Google Scholar 

  14. Johnson, D., Aragon, C., Mcgeoch, L., Schevon, C.: Optimization simulated annealing: an experimental evaluation; Part II, graph coloring and number partitioning. Oper. Res. 39, 378–406 (1991)

    Article  MATH  Google Scholar 

  15. Chen, H., Flann, N., Watson, D.: Parallel genetic simulated annealing: a massively parallel SIMD algorithm. IEEE Trans. Parallel Distrib. Syst. 9, 126–136 (1998)

    Article  Google Scholar 

  16. Pao, D., Lam, S., Fong, A.: Parallel implementation of simulated annealing using transaction processing. IEE Proc., Comput. Digit. Tech. 146, 107–113 (1999)

    Article  Google Scholar 

  17. Thompson, D., Bilbro, G.: Sample-sort simulated annealing. IEEE Trans. Syst. Man Cybern., Part B, Cybern. 35, 625–632 (2005)

    Article  Google Scholar 

  18. Xinchao, Z.: Simulated annealing algorithm with adaptive neighborhood. Appl. Soft Comput. 11(2), 1827–1836 (2011)

    Article  Google Scholar 

  19. Ben-Ameur, W.: Computing the initial temperature of simulated annealing. Comput. Optim. Appl. 29, 369–385 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  20. Oliveira, H.A. Jr., Petraglia, A., Ingber, L., Machado, M.A.S., Petraglia, M.R.: Stochastic Global Optimization and Its Applications with Fuzzy Adaptive Simulated Annealing. Springer, New York (2012)

    MATH  Google Scholar 

  21. Kincard, D., Cheney, W.: Numerical Analysis: Mathematics of Scientific Computing. Brooks/Coles, Pacific Grove (2002). Chap. 3

    Google Scholar 

  22. Hedar, A., Fukushima, M.: Tabu search directed by direct search methods for nonlinear global optimization. Eur. J. Oper. Res. 170, 329–349 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  23. Schaffer, J., Caruana, R., Eshelman, L., Das, R.: A study of control parameters affecting online performance of genetic algorithms for function optimization. In: Schaffer, J. (ed.) Proc. of the 3rd Int’l Conf. on GAs, pp. 51–60. Morgan Kauffman, San Francisco (1989)

    Google Scholar 

  24. Lee, C.-Y., Yao, X.: Evolutionary programming using mutations based on the Lévy probability distribution. IEEE Trans. Evol. Comput. 8, 1–13 (2004)

    Article  Google Scholar 

  25. Chao, L.: Statistics: Methods and Analyses. McGraw-Hill, New York (1966)

    Google Scholar 

Download references

Acknowledgement

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2012-0007627).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Yong Lee.

Appendix

Appendix

In the Appendix, we derive Eq. (9) from

$$ q = \sum_{j\ne i}^{N} \mathit{Prob} \bigl\{ \bigl|x^{\ast}_{j} - x_{i}^{c} \bigr| \le \alpha \bigr\} . $$
(30)

Suppose that a state x has the range R=UL, where x∈[L, U], and we divide the range into N intervals with widths of 2α so that N=R/(2α). For convenience, rank the centers of N intervals, \(x_{j}^{c}\) (j=1,2,…,N), in ascending order in their position. That is, we assume, without a loss of generality, that \(x_{i}^{c}\)’s are ordered in such a way that \(x_{i}^{c} > x_{j}^{c}\) when i>j. With this convention, we can express the center of j-th interval as

$$ x_{j}^{c}=2\alpha j- \alpha + L , $$
(31)

where j=1,2,…,N, so that we have

$$ x_{1}^{c}=L+\alpha\quad \mbox{and}\quad x_{N}^{c}=U- \alpha . $$
(32)

Denote \(x_{j}^{\ast}\) (j=1,2,…,N) as a sample state generated by a Cauchy distribution of the location parameter \(x_{j}^{c}\). Using the probability density function of the Cauchy distribution of Eq. (6), we can express

$$ \mathit{Prob} \bigl\{ \bigl\vert x_{j}^{\ast} - x_{i}^{c} \bigr\vert \le \alpha \bigr\} = \frac{T}{\pi} \int_{x_{i}^{c}-\alpha}^{x_{i}^{c}+\alpha} \frac{dx}{ (x-x_{j}^{c} )^{2}+T^{2}} . $$
(33)

Thus, Eq. (30) becomes

$$\begin{aligned} q = &\sum_{j\ne i}^{N} \mathit{Prob} \bigl\{ \bigl|x^{\ast}_{j} - x_{i}^{c} \bigr| \le \alpha \bigr\} \end{aligned}$$
(34)
$$\begin{aligned} = & \frac{T}{\pi} \sum_{j=1}^{i-1} \int_{x_{i}^{c}-\alpha}^{x_{i}^{c}+\alpha} \frac{dx}{ (x-x_{j}^{c} )^{2}+T^{2}} + \frac{T}{\pi} \sum_{j=i+1}^{N} \int_{x_{i}^{c}-\alpha}^{x_{i}^{c}+\alpha} \frac{dx}{ (x-x_{j}^{c} )^{2}+T^{2}} . \end{aligned}$$
(35)

To compute the integrals in Eq. (35), consider the following transformation:

$$ y=x-x_{j}^{c}+x_{i}^{c}=x+2(i-j) \alpha . $$
(36)

With the transformation, we have

$$ \int_{x_{i}^{c}-\alpha}^{x_{i}^{c}+\alpha} \frac{dx}{ (x-x_{j}^{c} )^{2}+T^{2}} = \int _{x_{i}^{c}+2(i-j)\alpha -\alpha}^{x_{i}^{c}+2(i-j)\alpha +\alpha} \frac{dy}{ (y-x_{i}^{c} )^{2}+T^{2}} . $$
(37)

Thus, the first integral on the right hand side of Eq. (35) can be rewritten as

$$ \sum_{j=1}^{i-1} \int_{x_{i}^{c}-\alpha}^{x_{i}^{c}+\alpha} \frac{dx}{ (x-x_{j}^{c} )^{2}+T^{2}} = \int_{x_{i}^{c}+\alpha}^{x_{i}^{c}+ 2 i \alpha - \alpha} \frac{dy}{ (y-x_{i}^{c} )^{2}+T^{2}} . $$
(38)

Similarly, the second integral can be rewritten as

$$ \sum_{j=i+1}^{N} \int_{x_{i}^{c}-\alpha}^{x_{i}^{c}+\alpha} \frac{dx}{ (x-x_{j}^{c} )^{2}+T^{2}} = \int_{x_{i}^{c}-(2N+1)\alpha + 2 i \alpha}^{x_{i}^{c}-\alpha} \frac{dy}{ (y-x_{i}^{c} )^{2}+T^{2}} . $$
(39)

With Eqs. (38) and (39), we can rewrite Eq. (30) as

$$\begin{aligned} q = & \frac{T}{\pi} \int_{x_{i}^{c}-(2N+1)\alpha + 2 i \alpha}^{x_{i}^{c}+ 2 i \alpha - \alpha} \frac{dy}{ (y-x_{i}^{c} )^{2}+T^{2}} - \frac{T}{\pi} \int_{x_{i}^{c}-\alpha}^{x_{i}^{c}+\alpha} \frac{dy}{ (y-x_{i}^{c} )^{2}+T^{2}} \\ = & \frac{1}{\pi} \tan^{-1} \biggl( \frac{2 i \alpha -\alpha}{T} \biggr) + \frac{1}{\pi} \tan^{-1} \biggl( \frac{(2N+1)\alpha - 2i\alpha}{T} \biggr)-p \\ = & \frac{1}{\pi} \tan^{-1} \biggl( \frac{R}{T} ~ \beta_{i} \biggr) + \frac{1}{\pi} \tan^{-1} \biggl( \frac{R}{T} (1-\beta_{i}) \biggr) -p , \end{aligned}$$
(40)

where

$$ \beta=\frac{i-1/2}{N} , $$
(41)

and we have used

$$ \alpha=\frac{R}{2N}\quad \mbox{and}\quad p= \frac{T}{\pi} \int _{x_{i}^{c}-\alpha}^{x_{i}^{c}+\alpha} \frac{dy}{ (y-x_{i}^{c} )^{2}+T^{2}} . $$
(42)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, CY., Lee, D. Determination of initial temperature in fast simulated annealing. Comput Optim Appl 58, 503–522 (2014). https://doi.org/10.1007/s10589-013-9631-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-013-9631-y

Keywords

Navigation