Skip to main content
Log in

Optimal control of electrorheological fluids through the action of electric fields

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

This paper is concerned with an optimal control problem of steady-state electrorheological fluids based on an extended Bingham model. Our control parameters are given by finite real numbers representing applied direct voltages, which enter in the viscosity of the electrorheological fluid via an electrostatic potential. The corresponding optimization problem belongs to a class of nonlinear optimal control problems of variational inequalities with control in the coefficients. We analyze the associated variational inequality model and the optimal control problem. Thereafter, we introduce a family of Huber-regularized optimal control problems for the approximation of the original one and verify the convergence of the regularized solutions. Differentiability of the solution operator is proved and an optimality system for each regularized problem is established. In the last part of the paper, an algorithm for the numerical solution of the regularized problem is constructed and numerical experiments are carried out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Casas, E., Fernández, L.A.: Distributed control of systems governed by a general class of quasilinear elliptic equations. J. Differ. Equ. 104(1), 20–47 (1993)

    Article  Google Scholar 

  2. Chan, Tony F., Golub, Gene H., Mulet, Pep: A nonlinear primal-dual method for total variation-based image restoration. SIAM J. Sci. Comput. 20(6), 1964–1977 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. De los Reyes, J.C., González, S.: Numerical simulation of two-dimensional Bingham fluid flow by semismooth Newton methods. J. Comput. Appl. Math. 235(1), 11–32 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. De Los Reyes, J.C.: Optimal control of a class of variational inequalities of the second kind. SIAM J. Control Optim. 49, 1629–1658 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. De los Reyes, J.C.: Optimization of mixed variational inequalities arising in flows of viscoplastic materials. Comput. Optim. Appl. 52, 757–784 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. De los Reyes, J.C., González, S.: Path following methods for steady laminar Bingham flow in cylindrical pipes. ESAIM M2AN 43, 81–117 (2000)

    Article  Google Scholar 

  7. De los Reyes, J.C., Herzog, R., Meyer, C.: Optimal control of static elastoplasticity in primal formulation, vol. 474. Ergebnisberichte des Instituts für Angewandte Mathematik, TU Dortmund (2013)

  8. Ekeland, I., Temam, R.: Convex analysis and variational problems. Classics in Applied Mathematics, vol. 28. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, (1999). (English edition translated from the French)

  9. Engelmann, B., Hiptmair, R., Hoppe, R.H.W., Mazurkevitch, G.: Numerical simulation of electrorheological fluids based on an extended Bingham model. Comput. Vis. Sci. 2, 211–219 (2000)

    Article  MATH  Google Scholar 

  10. Grisvard, P.: Elliptic Problems in Nonsmooth Domains. Pitman, Boston (1985)

    MATH  Google Scholar 

  11. Gunzburger, M.D.: Navier-Stokes equations for incompressible flows: finite-element methods. In Handbook of computational fluid mechanics, pp. 99–157. Academic Press, San Diego, CA (1996)

  12. Halsey, T.C.: Electrorheological fluids. Science 258(5083), 761–766 (1992)

    Article  Google Scholar 

  13. Herzog, R., Meyer, C., Wachsmuth, G.: B-and strong stationarity for optimal control of static plasticity with hardening. SIAM J. Optim. 23(1), 321–352 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hintermüller, M., Kopacka, I.: Mathematical programs with complementarity constraints in function space: C-and strong stationarity and a path-following algorithm. SIAM J. Optim. 20(2), 868–902 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hintermüller, M., Stadler, G.: An infeasible primal-dual algorithm for total bounded variation-based inf-convolution-type image restoration. SIAM J. Sci. Comput. 28(1), 1–23 (2006). (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hoppe, R.H.W., Litvinov, W.G.: Problems on electrorheological fluid flows. Commun. Pure Appl. Anal. 3(4), 809–848 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hoppe, R.W., Litvinov, W.G.: Modeling, simulation and optimization of electrorheological fluids. In: Glowinski, R., Xu, J. (eds.) Numerical Methods for Non-Newtonian Fluids. Handbook of Numerical Analysis, pp. 719–793. Elsevier, Amsterdam (2011)

  18. Hoppe, R.H.W., Litvinov, W.G., Rahman, T.: Problems of stationary flow of electrorheological fluids in a cylindrical coordinate system. SIAM J. Appl. Math. 65(5), 1633–1656 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. Jerison, D.S., Kenig, C.E.: The Neumann problem on Lipschitz domains. Bull. Am. Math. Soc. (N.S.) 4(2), 203–207 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  20. Litvinov, W.G., Hoppe, R.H.W.: Coupled problems on stationary non-isothermal flow of electrorheological fluids. Commun. Pure Appl. Anal. 4(4), 779–803 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  21. Litvinov, W.G., Rahman, T., Hoppe, R.H.W.: Model of an electro-rheological shock absorber and coupled problem for partial and ordinary differential equations with variable unknown domain. European J. Appl. Math. 18(4), 513–536 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ruzicka, M.: Electrorheological Fluids: Modeling and Mathematical Theory. Lecture Notes in Mathematics. Springer, Berlin (2000)

    Book  Google Scholar 

  23. Somersalo, E., Cheney, M., Isaacson, D.: Existence and uniqueness for electrode models for electric current computed tomography. SIAM J. Appl. Math. 52(4), 1023–1040 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  24. Tao, R.: Electro-rheological fluids and magneto-rheological suspensions. In: Proceedings of the 7th International Conference Honolulu, Hawaii, 9–23 July. World Scientific, Singapore (1999)

  25. Troianiello, G.M.: Elliptic Differential Equations and Obstacle Problems. The University Series in Mathematics. Plenum Press, New York (1987)

    Book  MATH  Google Scholar 

  26. Yousept, I.: Optimal control of Maxwell’s equations with regularized state constraints. Computational Optimization and Applications 52(2), 559–581 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. Yousept, I.: Optimal control of quasilinear \(\varvec {H}(\mathbf{curl})\)-elliptic partial differential equations in magnetostatic field problems. SIAM J. Control Optim. 51(5), 3624–3651 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We would like to thank Sergio González-Andrade for providing us the finite element matrices used in the computational experiment. Research partially supported by the Alexander von Humboldt Foundation and by the ’Excellence Initiative’ of the German Federal and State Governments and the Graduate School of Computational Engineering at TU Darmstadt.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Carlos De Los Reyes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Los Reyes, J.C., Yousept, I. Optimal control of electrorheological fluids through the action of electric fields. Comput Optim Appl 62, 241–270 (2015). https://doi.org/10.1007/s10589-014-9705-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-014-9705-5

Keywords

Mathematics Subject Classification

Navigation