Skip to main content
Log in

Global optimization of trusses with constraints on number of different cross-sections: a mixed-integer second-order cone programming approach

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

In design practice it is often that the structural components are selected from among easily available discrete candidates and a number of different candidates used in a structure is restricted to be small. Presented in this paper is a new modeling of the design constraints for obtaining the minimum compliance truss design in which only a limited number of different cross-section sizes are employed. The member cross-sectional areas are considered either discrete design variables that can take only predetermined values or continuous design variables. In both cases it is shown that the compliance minimization problem can be formulated as a mixed-integer second-order cone programming problem. The global optimal solution of this optimization problem is then computed by using an existing solver based on a branch-and-cut algorithm. Numerical experiments are performed to show that the proposed approach is applicable to moderately large-scale problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. Also called mixed-integer conic quadratic programming.

  2. Constraints (34) and (35) imply \(x_{e} \in \{ 0, \bar{\delta }, 2\bar{\delta }, \ldots , (2^{r}-1)\bar{\delta } \}\).

References

  1. Achtziger, W., Stolpe, M.: Truss topology optimization with discrete design variables—guaranteed global optimality and benchmark examples. Struct. Multidiscip. Optim. 34, 1–20 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  2. Achtziger, W., Stolpe, M.: Global optimization of truss topology with discrete bar areas—Part I: Theory of relaxed problems. Comput. Optim. Appl. 40, 247–280 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  3. Achtziger, W., Stolpe, M.: Global optimization of truss topology with discrete bar areas—Part II: Implementation and numerical results. Comput. Optim. Appl. 44, 315–341 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  4. Alizadeh, F., Goldfarb, D.: Second-order cone programming. Math. Progr. 95, 3–51 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  5. Allaire, G., Kohn, R.V.: Optimal design for minimum weight and compliance in plane stress using extremal microstructures. Eur. J. Mech. A 12, 839–878 (1993)

    MATH  MathSciNet  Google Scholar 

  6. Anjos, M.F., Lasserre, J.B. (eds.): Handbook on Semidefinite, Conic and Polynomial Optimization. Springer, New York (2012)

  7. Atamtürk, A., Narayanan, V.: Conic mixed-integer rounding cuts. Math. Progr. 122, 1–20 (2010)

    Article  MATH  Google Scholar 

  8. Ben-Tal, A., Bendsøe, M.P.: A new method for optimal truss topology design. SIAM J. Optim. 2, 322–358 (1993)

    Article  Google Scholar 

  9. Ben-Tal, A., Nemirovski, A.: Lectures on Modern Convex Optimization: Analysis, Algorithms, and Engineering Applications. SIAM, Philadelphia (2001)

    Book  Google Scholar 

  10. Bendsøe, M.P., Ben-Tal, A., Zowe, J.: Optimization methods for truss geometry and topology design. Struct. Optim. 7, 141–159 (1994)

    Article  Google Scholar 

  11. Bendsøe, M.P., Haber, R.B.: The Michell layout problem as a low volume fraction limit of the perforated plate topology optimization problem: an asymptotic study. Struct. Optim. 6, 263–267 (1993)

    Article  Google Scholar 

  12. Billionnet, A., Elloumi, S., Lambert, A.: Extending the QCR method to general mixed-integer programs. Math. Progr. 131, 381–401 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  13. Bollapragada, S., Ghattas, O., Hooker, J.N.: Optimal design of truss structures by logic-based branch and cut. Oper. Res. 49, 42–51 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  14. Bremicker, M., Papalambros, P.Y., Loh, H.T.: Solution of mixed-discrete structural optimization problems with a new sequential linearization algorithm. Comput. Struct. 37, 451–461 (1990)

    Article  Google Scholar 

  15. Cerveira, A., Agra, A., Bastos, F., Gromicho, J.: A new branch and bound method for a discrete truss topology design problem. Comput. Optim. Appl. 54, 163–187 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  16. Drewes, S., Pokutt, S.: Cutting-planes for weakly-coupled 0/1 second order cone programs. Electron. Notes Discret. Math. 36, 735–742 (2010)

    Article  Google Scholar 

  17. Gibiansky, L.V., Sigmund, O.: Multiphase composites with extremal bulk modulus. J. Mech. Phys. Solids 48, 461–498 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  18. Groenwold, A.A., Stander, N.: Optimal discrete sizing of truss structures subject to buckling constraints. Struct. Optim. 14, 71–80 (1997)

    Article  Google Scholar 

  19. Groenwold, A.A., Stander, N., Snyman, J.A.: A pseudo-discrete rounding method for structural optimization. Struct. Optim. 11, 218–227 (1996)

    Article  Google Scholar 

  20. Gurobi Optimization Inc.: Gurobi Optimizer Reference Manual. http://www.gurobi.com/. Accessed June 2014

  21. IBM, ILOG: User’s Manual for CPLEX. http://www.ilog.com/. Accessed December 2014

  22. Jarre, F., Kočvara, M., Zowe, J.: Optimal truss design by interior-point methods. SIAM J. Optim. 8, 1084–1107 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  23. Jog, C.S., Haber, R.B., Bendsøe, M.P.: Topology design with optimized, self-adaptive materials. Int. J. Numer. Methods Eng. 37, 1323–1350 (1994)

    Article  MATH  Google Scholar 

  24. Kanno, Y.: Damper placement optimization in a shear building model with discrete design variables: a mixed-integer second-order cone programming approach. Earthq. Eng. Struct. Dyn. 42, 1657–1676 (2013)

    Article  Google Scholar 

  25. Kravanja, S., Kravanja, Z., Bedenik, B.S.: The MINLP optimization approach to structural synthesis. Part I: A general view on simultaneous topology and parameter optimization. Int. J. Numer. Methods Eng. 43, 263–292 (1998)

    Article  MATH  Google Scholar 

  26. Lavan, O., Amir, O.: Simultaneous topology and sizing optimization of viscous dampers in seismic retrofitting of 3D irregular frame structures. Earthq. Eng. Struct. Dyn. 43, 1325–1342 (2014)

    Article  Google Scholar 

  27. Loh, H.T., Papalambros, P.Y.: A sequential linearization approach for solving mixed-discrete nonlinear design optimization problems. J. Mech. Des. (ASME) 113, 325–334 (1991)

    Article  Google Scholar 

  28. Makrodimopoulos, A., Bhaskar, A., Keane, A.J.: Second-order cone programming formulations for a class of problems in structural optimization. Struct. Multidiscip. Optim. 40, 365–380 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  29. Mela, K.: Resolving issues with member buckling in truss topology optimization using a mixed variable approach. Struct. Multidiscip. Optim. 50, 1037–1049 (2014)

    Article  MathSciNet  Google Scholar 

  30. Ohsaki, M., Katoh, N.: Topology optimization of trusses with stress and local constraints on nodal stability and member intersection. Struct. Multidiscip. Optim. 29, 190–197 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  31. Olsen, G.R., Vanderplaats, G.N.: Method for nonlinear optimization with discrete design variables. AIAA J. 27, 1584–1589 (1989)

    Article  Google Scholar 

  32. Rasmussen, M.H., Stolpe, M.: Global optimization of discrete truss topology design problems using a parallel cut-and-branch method. Comput. Struct. 86, 1527–1538 (2008)

    Article  Google Scholar 

  33. Ringertz, U.T.: A branch and bound algorithm for topology optimization of truss structures. Eng. Optim. 10, 111–124 (1986)

    Article  Google Scholar 

  34. Ringertz, U.T.: On methods for discrete structural optimization. Eng. Optim. 13, 47–64 (1988)

    Article  Google Scholar 

  35. Schmit, L.A., Fleury, C.: Discrete-continuous variable structural synthesis using dual methods. AIAA J. 18, 1515–1524 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  36. Stegmann, J., Lund, E.: Discrete material optimization of general composite shell structures. Int. J. Numer. Methods Eng. 62, 2009–2027 (2005)

    Article  MATH  Google Scholar 

  37. Stolpe, M.: Truss topology optimization with discrete design variables by outer approximation. J. Glob. Optim. 61, 139–163 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  38. Stolpe, M., Kawamoto, A.: Design of planar articulated mechanisms using branch and bound. Math. Progr. 103, 357–397 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  39. Stolpe, M., Svanberg, K.: Modelling topology optimization problems as linear mixed 0–1 programs. Int. J. Numer. Methods Eng. 57, 723–739 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  40. Templeman, A.B.: Discrete optimum structural design. Comput. Struct. 30, 511–518 (1988)

    Article  Google Scholar 

  41. Vielma, J.P., Ahmed, S., Nemhauser, G.L.: A lifted linear programming branch-and-bound algorithm for mixed-integer conic quadratic programs. INFORMS J. Comput. 20, 438–450 (2008)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work is partially supported by JSPS KAKENHI (C) 26420545.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshihiro Kanno.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kanno, Y. Global optimization of trusses with constraints on number of different cross-sections: a mixed-integer second-order cone programming approach. Comput Optim Appl 63, 203–236 (2016). https://doi.org/10.1007/s10589-015-9766-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-015-9766-0

Keywords

Navigation