Skip to main content
Log in

A proximal point algorithm based on decomposition method for cone constrained multiobjective optimization problems

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

By using auxiliary principle technique, a new proximal point algorithm based on decomposition method is suggested for computing a weakly efficient solution of the constrained multiobjective optimization problem (MOP) without assuming the nonemptiness of its solution set. The optimality conditions for (MOP) are derived by the Lagrangian function of its subproblem and corresponding mixed variational inequality. Some basic properties and convergence results of the proposed method are established under some mild assumptions. As an application, we employ the proposed method to solve a split feasibility problem. Finally, numerical results are also presented to illustrate the feasibility of the proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ansari, Q.H., Rehan, A.: Split feasibility and fixed point problems. In: Ansari, Q.H. (ed.) Nonlinear Analysis: Approximation Theory, Optimization and Applications, pp. 281–322. Birkhäuser, New Delhi (2014)

    Google Scholar 

  2. Antczak, T.: An \(\eta \)-approximation method in nonlinear vector optimization. Nonlinear Anal. 63, 225–236 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces. Springer, New York (2010)

    MATH  Google Scholar 

  4. Ben-Tal, A., Zowe, J.: Necessary and sufficient optimality conditions for a class of nonsmooth minimization problems. Math. Progr. 24, 70–91 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  5. Burachik, R.S., Jeyakumar, V.: A dual condition for the convex subdifferential sum formula with applications. J. Convex Anal. 12, 279–290 (2005)

    MathSciNet  MATH  Google Scholar 

  6. Boyd, S., Parikh, N., Chu, E.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends. Mach. Learn. 3, 1–122 (2010)

    Article  MATH  Google Scholar 

  7. Byrne, C.: An unified treatment of some iterative algorithm algorithms in signal processing and image reconstruction. Inverse Probl. 20, 103–120 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cai, X.J., Gu, G.Y., He, B.S.: A proximal point algorithm revisit on the alternating direction method of multipliers. Sci. China Math. 56, 2179–2186 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ceng, L.-C., Ansari, Q.H., Yao, J.-C.: Relaxed extragradient methods for finding minimum-norm solutions of the split feasibility problem. Nonlinear Anal. 75, 2116–2125 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ceng, L.-C., Ansari, Q.H., Yao, J.-C.: An extragradient method for split feasibility and fixed point problems. Comput. Math. Appl. 64, 633–642 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Censor, Y., Chen, W., Combettes, L.P., Davidi, R., Herman, G.T.: On the effictiveness of projection methods for convex feasibility problems with linear inequality constraints. Comput. Optim. Appl. 51, 1065–1088 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Censor, Y., Bortfeld, T., Martin, B., Trofimov, A.: A unified approach for inversion problems in intensity modulated radiation therapy. Phys. Med. Biol. 51, 2353–2365 (2006)

    Article  Google Scholar 

  13. Chen, J.W., Cho, Y.J., Kim, J.K., Li, J.: Multiobjective optimization problems with modified objective functions and cone constraints and applications. J. Global Optim. 49, 137–147 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Chuong, T.D., Yao, J.C.: Fréchet subdifferentials of efficient point multifunctions in parametric vector optimization. J. Global Optim. 57, 1229–1243 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Combettes, P.L.: The Convex Feasibility Problem in Image Recovery. Advances in Imaging and Electron Physics 95. Academic Press, New York (1996)

    Google Scholar 

  16. Combettes, P.L., Hirstoaga, S.A.: Equilibrium programming in Hilbert spaces. J. Nonlinear Convex Anal. 6, 117–136 (2005)

    MathSciNet  MATH  Google Scholar 

  17. Craven, B.D.: Control and Optimization. Chapman & Hall, New York (1995)

    Book  MATH  Google Scholar 

  18. Gao, Y., Hou, S.H., Yang, X.M.: Existence and optimality conditions for approximate solutions to vector optimization problems. J. Optim. Theory Appl. 152, 97–120 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Giannessi, F., Mastroeni, G., Pellegrini, L.: On the theory of vector optimization and variational inequalities. Image space analysis and seperation. In: Giannessi, F. (ed.) Vector Variational Inequalities and Vector Equilibria, pp. 153–215. Kluwer Academic, Dordrech (2000)

    Chapter  Google Scholar 

  20. Giannessi, F.: Constrained Optimization and Image Space Analysis, Vol. 1: Separation of Sets and Optimality Conditions. Springer, New York (2005)

    MATH  Google Scholar 

  21. He, B.S., Xu, M.H., Yuan, X.M.: Solving large-scale least squares semidefinite programming by alternating direction methods. SIAM J. Matrix Anal. Appl. 3, 136–152 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. He, B.S., Shen, Y.: On the convergence rate of customized proximal point algorithm for convex optimization and saddle-point problem. Sci. Sin. Math. 42, 515–525 (2012)

    Article  Google Scholar 

  23. He, B.S., Yuan, X.M., Zhang, W.: A customized proximal point algorithm for convex minimization with linear constraints. Comput. Optim. Appl. 56, 559–572 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  24. Li, J., Feng, S.Q., Zhang, Z.: A unified approach for constrained extremum problems: image space analysis. J. Optim. Theory Appl. 159, 69–92 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  25. Martinet, B.: Regularisation, d’inéquations variationelles par approximations successives. Rev. Francaise d’Inform. Recherche Oper. 4, 154–159 (1970)

    MathSciNet  MATH  Google Scholar 

  26. Qu, B., Xiu, N.: A note on the CQ algorithm for the split feasibility problem. Inverse Prob. 21, 1655–1665 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  27. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)

    Book  MATH  Google Scholar 

  28. Rockafellar, R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14, 877–898 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  29. Schy, A., Giesy, D.P.: Multicriteria optimization techniques for design of aircraft control systems. In: Stadler, W. (ed.) Multieriteria Optimization in Engineering and in the Sciences. Plenum Press, New York (1988)

    Google Scholar 

  30. Shen, Y., Zhang, W., He, B.S.: Relaxed augmented Lagrangian-based proximal point algorithms for convex optimization with linear constraints. J. Ind. Manag. Optim. 10, 743–759 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  31. Stadler, W.: Multicriteria Optimization in Engineering and in the Sciences. Plenum Press, New York (1988)

    Book  MATH  Google Scholar 

  32. Takahashi, W., Zembayashi, K.: Strong and weak convergence theorems for equilibrium problems and relatively nonexpansive mappings in Banach spaces. Nonlinear Anal. 70, 45–57 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  33. Yang, Q.: The relaxed CQ algorithm solving the split feasibility problem. Inverse Prob. 20, 1261–1266 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  34. Yao, Y., Yang, P., Kang, S.M.: Composite projection algorithms for the split feasibility problem. Math. Comput. Model. 57, 693–700 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  35. Yin, W., Osher, S., Goldfarb, D., Darbon, J.: Bregman iterative algorithms for \(\ell _{1}\)-minimization with applications to compressed sensing. SIAM J. Imaging Sci. 1, 143–168 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  36. Zhao, J., Yang, Q.: Several solution methods for the split feasibility problem. Inverse Prob. 21, 1791–1799 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the associated editor and the three anonymous referees for their valuable comments and suggestions to improve the first draft of this paper. This research was carried out during the visit of Jiawei Chen to National Sun Yat-Sen University, Kaohsiung in July 2014. The first author was partially supported by the Natural Science Foundation of China (11401487), the Fundamental Research Funds for the Central Universities (SWU113037, XDJK2014C073). The third author was partially supported by the grant MOST 101-2628-E-230-001-MY3 and MOST 101-2622-E-230-005-CC3. The fourth author was partially supported by MOST 103-2923 E-039-001-MY3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jen-Chih Yao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Ansari, Q.H., Liou, YC. et al. A proximal point algorithm based on decomposition method for cone constrained multiobjective optimization problems. Comput Optim Appl 65, 289–308 (2016). https://doi.org/10.1007/s10589-016-9840-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-016-9840-2

Keywords

Navigation