Skip to main content
Log in

On the resolution of certain discrete univariate max–min problems

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

We analyze a class of discrete, univariate, and strictly quasiconcave max–min problems. A distinctive feature of max–min-type optimization problems is the nonsmoothness of the objective being maximized. Here we exploit strict quasiconcavity of the given set of functions to prove existence and uniqueness of the optimizer, and to provide computable bounds for it. The analysis inspires an efficient algorithm for computing the optimizer without having to resort to any regularization or heuristics. We prove correctness of the proposed algorithm and briefly discuss the effect of tolerances and approximate computation. Our study finds direct application in the context of certain mesh deformation methods, wherein the optimal perturbation for a vertex is computed as the solution of a max–min problem of the type we consider here. We include examples demonstrating improvement of simplicial meshes while adopting the proposed algorithm for resolution of the optimization problems involved, and use these numerical experiments to examine the performance of the algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. More precisely, we require the number of pairwise intersections of functions within the interval \([{\underline{\varLambda }}_{y_0},{\overline{\varLambda }}_{y_0}]\) to be finite.

  2. We say that \(f_\alpha \) is active over the interval \({\text {I}}\) if \(F=f_\alpha \) on \({\text {I}}\).

  3. Arguing as we did in Propositions 1 and 2, we can shows that \(f_{\alpha _s}\) has a unique maximizer over \([\lambda _{s-1},\lambda _s]\). For the purpose of arriving at Eq. (32) however, the inclusion noted in Eq. (31) is sufficient.

  4. We thank Prof. Adrian Lew (Stanford University) for helpful discussions regarding Proposition 10.

  5. We only request that Q be defined over triangles whose vertices do not all coincide.

  6. In general, n is less than or equal to the valence of a vertex since the quality curves of two or more elements may coincide. For the representative data in Fig. 5c, n equals the vertex valence.

References

  1. Cherkaev, E., Cherkaev, A.: Minimax optimization problem of structural design. Comput. Struct. 86(13), 1426–1435 (2008)

    Article  MATH  Google Scholar 

  2. Du, D., Pardalos, P.: Minimax and Applications, vol. 4. Springer, Berlin (2013)

    Google Scholar 

  3. Ke, Q., Kanade, T.: Quasiconvex optimization for robust geometric reconstruction. IEEE Trans. Pattern Anal. Mach. Intell. 29(10), 1834–1847 (2007)

    Article  Google Scholar 

  4. Demyanov, V., Malozemov, V.: Introduction to Minimax. Dover Publications (1990).

  5. Polyak, R.: Smooth optimization methods for minimax problems. SIAM J. Control Optim. 26(6), 1274–1286 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  6. Xu, S.: Smoothing method for minimax problems. Comput. Optim. Appl. 20(3), 267–279 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  7. Sotiropoulos, D.: Solving discrete minimax problems using interval arithmetic. Pac. J. Optim. 2(2), 241–259 (2006)

    MathSciNet  MATH  Google Scholar 

  8. Wolfe, M.: On discrete minimax problems in R using interval arithmetic. Reliab. Comput. 5(4), 371–383 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dari, E., Buscaglia, G.: Mesh optimization: how to obtain good unstructured 3D finite element meshes with not-so-good mesh generators. Struct. Optim. 8(2–3), 181–188 (1994)

    Article  Google Scholar 

  10. Freitag, L., Jones, M., Plassmann, P.: An efficient parallel algorithm for mesh smoothing. In: Proceedings of the 4th International Meshing Roundtable, pp. 47–58 (1995)

  11. Zavattieri, P., Dari, E., Buscaglia, G.: Optimization strategies in unstructured mesh generation. Int. J. Numer. Methods Eng. 39(12), 2055–2071 (1996)

    Article  MATH  Google Scholar 

  12. Bank, R., Smith, R.: Mesh smoothing using a posteriori error estimates. SIAM J. Numer. Anal. 34(3), 979–997 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  13. Alliez, P., Ucelli, G., Gotsman, C., Attene, M.: Recent advances in remeshing of surfaces. In: De Floriani, L., Spangnuolo, M. (eds.) Shape Analysis and Structuring, pp. 53–82. Springer, Berlin (2008)

  14. Amenta, N., Bern, M., Eppstein, D.: Optimal point placement for mesh smoothing. J. of Algorithms 30(2), 302–322 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  15. Eppstein, D.: Quasiconvex programming. Comb. Comput. Geom. 52, 287–331 (2005)

    MathSciNet  MATH  Google Scholar 

  16. Ansari, Q., Lalitha, C., Mehta, M.: Generalized Convexity, Nonsmooth Variational Inequalities, and Nonsmooth Optimization. CRC Press, Boca Raton (2013)

    MATH  Google Scholar 

  17. Greenberg, H., Pierskalla, W.: A review of quasi-convex functions. Oper. Res. 19(7), 1553–1570 (1971)

    Article  MATH  Google Scholar 

  18. Rangarajan, R., Lew, A.: Provably robust directional vertex relaxation for geometric mesh optimization (submitted, 2016)

  19. Knupp, P.: Algebraic mesh quality metrics. SIAM J. Sci. Comput. 23(1), 193–218 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  20. Pébay, P., Baker, T.: Analysis of triangle quality measures. Math. Comput. 72(244), 1817–1839 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  21. Frey, W., Field, D.: Mesh relaxation: a new technique for improving triangulations. Int. J. Numer. Methods Eng. 31(6), 1121–1133 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  22. Du, Q., Wang, D., Zhu, L.: On mesh geometry and stiffness matrix conditioning for general finite element spaces. SIAM J. Numer. Anal. 47(2), 1421–1444 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Liu, A., Joe, B.: On the shape of tetrahedra from bisection. Math. Comput. 63(207), 141–154 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  24. Barber, B., Dobkin, D., Huhdanpaa, H.: The quickhull algorithm for convex hulls. ACM Trans. Math. Softw. 22(4), 469–483 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kobel, A., Rouillier, F., Sagraloff, M.: Computing real roots of real polynomials... and now for real! arXiv preprint arXiv:1605.00410 (2016)

  26. Edelman, A., Murakami, H.: Polynomial roots from companion matrix eigenvalues. Math. Comput. 64(210), 763–776 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  27. Galassi, M., Davies, J., Theiler, J., Gough, B., Jungman, G., Alken, P., Booth, M., Rossi, F.: GNU scientific library reference manual. URL http://www.gnu.org/software/gsl, version 1 (2010)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramsharan Rangarajan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rangarajan, R. On the resolution of certain discrete univariate max–min problems. Comput Optim Appl 68, 163–192 (2017). https://doi.org/10.1007/s10589-017-9903-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-017-9903-z

Keywords

Mathematics Subject Classification

Navigation