Skip to main content
Log in

Adaptive \(l_1\)-regularization for short-selling control in portfolio selection

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

We consider the \(l_1\)-regularized Markowitz model, where a \(l_1\)-penalty term is added to the objective function of the classical mean-variance one to stabilize the solution process, promoting sparsity in the solution. The \(l_1\)-penalty term can also be interpreted in terms of short sales, on which several financial markets have posed restrictions. The choice of the regularization parameter plays a key role to obtain optimal portfolios that meet the financial requirements. We propose an updating rule for the regularization parameter in Bregman iteration to control both the sparsity and the number of short positions. We show that the modified scheme preserves the properties of the original one. Numerical tests are reported, which show the effectiveness of the approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. http://www.gurobi.com.

  2. Data available at http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html#BookEquity

References

  1. AitSahlia, F., Sheu, Y., Pardalos, P.M.: Optimal Execution of Time-Constrained Portfolio Transactions, pp. 95–102. Springer, Berlin (2008)

    MATH  Google Scholar 

  2. Antonelli, L., De Simone, V.: Comparison of minimization methods for nonsmooth image segmentation. Commun. Appl. Ind. Math. 9(1), 68–86 (2018)

    MathSciNet  MATH  Google Scholar 

  3. Barzilai, J., Borwein, J.: Two-point step size gradient methods. IMA J. Numer. Anal. 8, 141–148 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  4. Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2, 183–202 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Beck, A., Teboulle, M.: Gradient-based algorithms with applications to signal recovery. In: Convex optimization in signal processing and communications, pp 42–88 (2009)

  6. Benfenati, A., Ruggiero, V.: Inexact bregman iteration with an application to poisson data reconstruction. Inverse Probl. 29(6), 065016 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bregman, L.: The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming. USSR Comput. Math. Math. Phys. 7, 200–217 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  8. Brodie, J., Daubechies, I., DeMol, C., Giannone, D., Loris, I.: Sparse and stable markowitz portfolios. PNAS 30(106), 12267–12272 (2009)

    Article  MATH  Google Scholar 

  9. Carrasco, M., Noumon, N.: Optimal portfolio selection using regularization. Working Paper University of Montreal (2012)

  10. Cesarone, F., Scozzari, A., Tardella, F.: A new method for mean-variance portfolio optimization with cardinality constraints. Ann. Oper. Res. 205, 213–234 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cesarone, F., Scozzari, A., Tardella, F.: Linear vs. quadratic portfolio selection models with hard real-world constraints. Comput. Manag. Sci. 12(3), 345–370 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. De Asmundis, R., di Serafino, D., Hager, W., Toraldo, G., Zhang, H.: An efficient gradient method using the yuan steplength. Comput. Optim. Appl. 59(3), 541–563 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. De Asmundis, R., di Serafino, D., Riccio, F., Toraldo, G.: On spectral properties of steepest descent methods. IMA J. Numer. Anal. 32, 1416–1435 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. DeMiguel, V., Garlappi, L., Nogales, F., Uppal, R.: A generalized approach to portfolio optimization: improving performance by constraining portfolio norms. Manag. Sci. 55(5), 798–812 (2009)

    Article  MATH  Google Scholar 

  15. DeMiguel, V., Garlappi, L., Uppal, R.: Optimal versus naive diversification: how inefficient is the 1/N portfolio strategy? Rev. Financ. Stud. 22(5), 1915–1953 (2009)

    Article  Google Scholar 

  16. Di Lorenzo, D., Liuzzi, G., Rinaldi, F., Schoen, F., Sciandrone, M.: A concave optimization-based approach for sparse portfolio selection. Optim. Methods Softw. 27(6), 983–1000 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Di Serafino, D., Ruggiero, V., Toraldo, G., Zanni, L.: On preconditioner updates for sequences of saddle-point linear systems. Appl. Math. Comput. 318, 176–195 (2018)

    MathSciNet  MATH  Google Scholar 

  18. Güter, O.: New proximal point algorithms for convex minimization. SIAM J. Optim. 2(4), 649–664 (1992)

    Article  MathSciNet  Google Scholar 

  19. Goldstein, T., Bresson, X., Osher, S.: Geometric applications of the split bregman method: segmentation and surface reconstruction. J. Sci. Comput. 45(1), 272–293 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Goldstein, T., Osher, S.: The split bregman method for $l_{1}$-regularization problems. SIAM J. Imaging Sci. 2(2), 323–343 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Grick, K., Scherzer, O.: Regularization of ill-posed linear equations by the non-stationary augmented lagrangian method. J. Integral Equ. Appl. 22(2), 217–257 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ho, M., Sun, Z., Xin, J.: Weighted elastic net penalized mean-variance portfolio design and computation. SIAM J. Finan. Math. 6(1), 1220–1244 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  23. Jagannathan, R., Tongshu, M.: Risk reduction in large portfolios: why imposing the wrong constraints helps. J. Finance 58(4), 1651–1683 (2003)

    Article  Google Scholar 

  24. Kim, M., Lee, Y., Kim, J., Kim, W.: Sparse tangent portfolio selection via semi-definite relaxation. Oper. Res. Lett. 44(4), 540–543 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  25. Li, J.: Sparse and stable portfolio selection with parameter uncertainty. J. Bus. Econ. Stat. 33(3), 381–392 (2015)

    Article  MathSciNet  Google Scholar 

  26. Luenberger, D.G., Ye, Y.: Linear and Nonlinear Programming. Springer, Berlin (2008)

    Book  MATH  Google Scholar 

  27. Ma, S., Goldfarb, D., Chen, L.: Fixed point and bregman iterative methods for matrix rank minimization. Math. Program. 128(1), 321–353 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  28. Markowitz, H.: Portfolio selection. J. Finance 7(1), 77–91 (1952)

    Google Scholar 

  29. Markowitz, H.: Portfolio Selection: Efficient Diversification of Investments. Wiley, London (1959)

    Google Scholar 

  30. Nesterov, Y.: A method of solving a convex programming problem with convergence rate o (1/k2). Sov. Math. Dokl. 27, 372–376 (1983)

    MATH  Google Scholar 

  31. Osher, S., Burger, M., Goldfarb, D., Xu, J., Yin, W.: An iterative regularization method for total variation-based image restoration. Multiscale Model. Simul. 4(2), 460–489 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  32. Pardalos, P.M.: Optimization techniques for portfolio selection. In: Zopounidis, C. (ed.) New Operational Approaches for Financial Modelling, pp. 19–33. Physica-Verlag HD, Heidelberg (1997)

    Chapter  Google Scholar 

  33. Pardalos, P.M., Sandström, M., Zopounidis, C.: On the use of optimization models for portfolio selection: a review and some computational results. Comput. Econ. 7(4), 227–244 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  34. Vogel, C.: Computational Methods for Inverse Problems. SIAM, Philadelphia (2002)

    Book  MATH  Google Scholar 

  35. Yen, Y., Yen, T.: Solving norm constrained portfolio optimization via coordinate-wise descent algorithms. Comput. Stat. Data Anal. 76, 737–759 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  36. Yin, W., Osher, S.: Error forgetting of bregman iteration. J. Sci. Comput. 54, 684–695 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  37. Yin, W., Osher, S., Goldfarb, D., Darbon, J.: Bregman iterative algorithms for L1-minimization with applications to compressed sensing. SIAM J. Imaging Sci. 1(1), 143–168 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was partially supported by FFABR grant, annuity 2017, and INdAM-GNCS Project 2018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefania Corsaro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Corsaro, S., De Simone, V. Adaptive \(l_1\)-regularization for short-selling control in portfolio selection. Comput Optim Appl 72, 457–478 (2019). https://doi.org/10.1007/s10589-018-0049-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-018-0049-4

Keywords

Navigation