Skip to main content
Log in

Projective method of multipliers for linearly constrained convex minimization

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

We present a method for solving linearly constrained convex optimization problems, which is based on the application of known algorithms for finding zeros of the sum of two monotone operators (presented by Eckstein and Svaiter) to the dual problem. We establish convergence rates for the new method, and we present applications to TV denoising and compressed sensing problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. Actually, it can be shown that \(\gamma _k\ge c_k\), where \(c_k>0\) (see [9, Proposition 3]).

  2. Marked with an asterisk (*).

References

  1. Brezis, H.: Functional Analysis. Sobolev Spaces and Partial Differential Equations. Universitext. Springer, New York (2011)

    MATH  Google Scholar 

  2. Burachik, R.S., Sagastizábal, C.A., Svaiter, B.F., \(\epsilon \)-enlargements of maximal monotone operators: theory and applications. In: Reformulation: nonsmooth, piecewise smooth, semismooth and smoothing methods (Lausanne, 1997), vol. 22 of Appl. Optim, pp. 25–43. Kluwer Academic Publishers, Dordrecht (1999)

  3. Candès, E.J., Romberg, J., Tao, T.: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52(2), 489–509 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Donoho, D.L.: Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Eckstein, J.: Parallel alternating direction multiplier decomposition of convex programs. J. Optim. Theory Appl. 80(1), 39–62 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  6. Eckstein, J.: Augmented Lagrangian and alternating direction methods for convex optimization: a tutorial and some illustrative computational results. RUTCOR Research Reports 32 (2012)

  7. Eckstein, J., Bertsekas, D.P.: On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators. Math. Program. Ser. A 55(3), 293–318 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  8. Eckstein, J., Ferris, M.C.: Operator-splitting methods for monotone affine variational inequalities, with a parallel application to optimal control. INFORMS J. Comput. 10(2), 218–235 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  9. Eckstein, J., Svaiter, B.F.: A family of projective splitting methods for the sum of two maximal monotone operators. Math. Program. Ser. B 111(1–2), 173–199 (2008)

    MathSciNet  MATH  Google Scholar 

  10. Esser, E.: Applications of lagrangian-based alternating direction methods and connections to split bregman. CAM Rep. 9, 31 (2009)

    Google Scholar 

  11. Gabay, D.: Chapter ix applications of the method of multipliers to variational inequalities. Studies Math. Appl. 15, 299–331 (1983)

    Google Scholar 

  12. Gabay, D., Mercier, B.: A dual algorithm for the solution of nonlinear variational problems via finite element approximation. Comput. Math. Appl. 2(1), 17–40 (1976)

    Article  MATH  Google Scholar 

  13. Glowinski, R., Marrocco, A.: Sur l’approximation, par éléments finis d’ordre un, et la résolution, par pénalisation-dualité, d’une classe de problèmes de Dirichlet non linéaires. Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge Anal. Numér. 9(R–2), 41–76 (1975)

    MathSciNet  MATH  Google Scholar 

  14. Goldstein, T., Osher, S.: The split Bregman method for \(L1\)-regularized problems. SIAM J. Imaging Sci. 2(2), 323–343 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. He, B., Yuan, X.: On the \(O(1/n)\) convergence rate of the Douglas-Rachford alternating direction method. SIAM J. Numer. Anal. 50(2), 700–709 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hiriart–Urruty, J.B., Lemaréchal, C.: Convex analysis and minimization algorithms II: advanced theory and bundle methods. In: Grundlehren der Mathematischen Wissenschaften, vol. 306. Springer, Berlin (1993)

  17. Lions, P.-L., Mercier, B.: Splitting algorithms for the sum of two nonlinear operators. SIAM J. Numer. Anal. 16(6), 964–979 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  18. Minty, G.J.: Monotone (nonlinear) operators in Hilbert space. Duke Math. J. 29, 341–346 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  19. Monteiro, R.D.C., Svaiter, B.F.: Iteration-complexity of block-decomposition algorithms and the alternating direction method of multipliers. SIAM J. Optim. 23(1), 475–507 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Moreau, J.-J.: Proximité et dualité dans un espace hilbertien. Bull. Soc. Math. France 93, 273–299 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  21. Passty, G.B.: Ergodic convergence to a zero of the sum of monotone operators in Hilbert space. J. Math. Anal. Appl. 72(2), 383–390 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  22. Rockafellar, R.T.: Convex Analysis. Princeton Mathematical Series, No. 28. Princeton University Press, Princeton, NJ (1970)

    Book  MATH  Google Scholar 

  23. Rockafellar, R.T.: On the maximal monotonicity of subdifferential mappings. Pac. J. Math. 33, 209–216 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  24. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms (Experimental mathematics: computational issues in nonlinear science (Los Alamos, NM, 1991)). Phys. D 60(1–4), 259–268 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  25. Tseng, P.: Applications of a splitting algorithm to decomposition in convex programming and variational inequalities. SIAM J. Control Optim. 29(1), 119–138 (1991)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is part of the author’s Ph.D. thesis, written under the supervision of Benar Fux Svaiter at IMPA, and supported by CAPES and FAPERJ. The author would like to thank Carlos Antonio Galeano Ríos and Mauricio Romero Sicre for the many helpful suggestions on this paper, which have improved the exposition considerably.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majela Pentón Machado.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pentón Machado, M. Projective method of multipliers for linearly constrained convex minimization. Comput Optim Appl 73, 237–273 (2019). https://doi.org/10.1007/s10589-019-00065-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-019-00065-1

Keywords

Mathematics Subject Classification

Navigation