Skip to main content
Log in

A second-order shape optimization algorithm for solving the exterior Bernoulli free boundary problem using a new boundary cost functional

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

The exterior Bernoulli problem is rephrased into a shape optimization problem using a new type of objective function called the Dirichlet-data-gap cost function which measures the \(L^2\)-distance between the Dirichlet data of two state functions. The first-order shape derivative of the cost function is explicitly determined via the chain rule approach. Using the same technique, the second-order shape derivative of the cost function at the solution of the free boundary problem is also computed. The gradient and Hessian informations are then used to formulate an efficient second-order gradient-based descent algorithm to numerically solve the minimization problem. The feasibility of the proposed method is illustrated through various numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Alt, A., Caffarelli, L.A.: Existence and regularity for a minimum problem with free boundary. J. Reine. Angew. Math. 325, 105–144 (1981)

    MathSciNet  MATH  Google Scholar 

  2. Azegami, H.: A solution to domain optimization problems. Trans. Jpn. Soc. Mech. Eng. Ser. A 60, 1479–1486 (1994). (in Japanese)

    Google Scholar 

  3. Azegami, H., Shimoda, M., Katamine, E., Wu, Z.C.: A domain optimization technique for elliptic boundary value problems. In: Hernandez, S., El-Sayed, M., Brebbia, C.A. (eds.) Computer Aided Optimization Design of Structures IV, Structural Optimization, pp. 51–58. Computational Mechanics Publications, Southampton (1995)

    Google Scholar 

  4. Azegami, H., Wu, Z.Q.: Domain optimization analysis in linear elastic problems: approach using traction method. SME Int. J. Ser. A 39, 272–278 (1996)

    Google Scholar 

  5. Azegami, H., Kaizu, S., Shimoda, M., Katamine, E.: Irregularity of shape optimization problems and an improvement technique. In: Hernandez, S., Brebbia, C.A. (eds.) Computer Aided Optimization Design of Structures IV, Structural Optimization, pp. 309–326. Computational Mechanics Publications, Southampton (1997)

    Google Scholar 

  6. Azegami, H.: Solution of shape optimization problem and its application to product design, mathematical analysis of continuum mechanics and industrial applications. In: Itou, H., Kimura, M., Chalupecký, V., Ohtsuka, K., Tagami, D., Takada, A. (eds.) Computer Aided Optimization Design of Structures IV, Structural Optimization, vol. 26, pp. 83–98. Mathematics for Industry, Springer, Singapore (2016)

    Google Scholar 

  7. Azegami, H.: Shape Optimization Problems. Morikita Publishing Co. Ltd, Tokyo (2016). (in Japanese)

    MATH  Google Scholar 

  8. Azegami, H.: Second derivatives of cost functions and \(H^1\) Newton method in shape optimization problems, mathematical analysis of continuum mechanics and industrial applications II. In: van Meurs, P., Kimura, M., Notsu, H. (eds.) Proceedings of the International Conference CoMFoS16, vol. 30, pp. 61–72. Mathematics for Industry, Springer, Singapore (2017)

  9. Bacani, J.B.: Methods of shape optimization in free boundary problems. Ph.D. thesis, Karl-Franzens-Universität-Graz (2013)

  10. Bacani, J.B., Peichl, G.: On the first-order shape derivative of the Kohn–Vogelius cost functional of the Bernoulli problem. Abstr. Appl. Anal. 2013, 19 (2013). Article ID 384320

    MathSciNet  MATH  Google Scholar 

  11. Bacani, J.B., Peichl, G.: Solving the exterior Bernoulli problem using the shape derivative approach. In: Mathematics and Computing 2013. International Conference in Haldia, India, vol. 91, pp. 251–269 . Springer Proceedings in Mathematics and Statistics, vol. XXII, Springer(2014)

  12. Ben Abda, A., Bouchon, F., Peichl, G., Sayeh, M., Touzani, R.: A Dirichlet-Neumann cost functional approach for the Bernoulli problem. J. Eng. Math. 81, 157–176 (2013)

    MathSciNet  MATH  Google Scholar 

  13. Boulkhemair, A., Nachaoui, A., Chakib, A.: A shape optimization approach for a class of free boundary problems of Bernoulli type. Appl. Math. 58, 205–221 (2013)

    MathSciNet  MATH  Google Scholar 

  14. Boulkhemair, A., Chakib, A., Nachaoui, A.: Uniform trace theorem and application to shape optimization. Appl. Comput. Math. 7, 192–205 (2008)

    MathSciNet  MATH  Google Scholar 

  15. Boulkhemair, A., Chakib, A.: On the uniform Poincaré inequality. Commun. Partial Differ. Equ. 32, 1439–1447 (2007)

    MATH  Google Scholar 

  16. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  17. Bühler, T., Salamon, D.A.: Functional Analysis. Graduate studies in mathematics, vol. 191. AMS, Providence (2018)

    MATH  Google Scholar 

  18. Chenais, D.: On the existence of a solution in a domain identification problem. J. Math. Anal. Appl. 52, 189–219 (1975)

    MathSciNet  MATH  Google Scholar 

  19. Clarke, F.: Functional Analysis, Calculus of Variations and Optimal Control. Graduate Texts in Mathematics, vol. 264. Springer, London (2013)

    Google Scholar 

  20. Delfour, M.C., Zolésio, J.-P.: Shape sensitivity analysis by min max differentiability. SIAM J. Control Optim. 26(4), 834–862 (1988)

    MathSciNet  MATH  Google Scholar 

  21. Delfour, M.C., Zolésio, J.-P.: Structure of shape derivatives for nonsmooth domains. J. Funct. Anal. 104(1), 1–33 (1992)

    MathSciNet  MATH  Google Scholar 

  22. Delfour, M.C., Zolésio, J.-P.: Shapes and Geometries: Metrics, Analysis, Differential Calculus, and Optimization. Advanced Design Control, vol. 22, 2nd edn. SIAM, Philadelphia (2011)

    MATH  Google Scholar 

  23. Dambrine, M., Pierre, M.: About stability of equilibrium shapes. Model. Math. Anal. Numer. 34, 811–834 (2000)

    MathSciNet  MATH  Google Scholar 

  24. Dambrine, M.: On variations of the shape Hessian and sufficient conditions for the stability of critical shapes. Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A. Mat. 96, 95–121 (2002)

    MathSciNet  MATH  Google Scholar 

  25. Eppler, K.: Boundary integral representations of second derivatives in shape optimization. Discuss. Math. Differ. Incl. Control. Optim. 20, 487–516 (2000)

    MathSciNet  MATH  Google Scholar 

  26. Eppler, K.: Optimal shape design for elliptic equations via BIE-methods. J. Appl. Math. Comput. Sci. 10, 69–85 (2000)

    MathSciNet  MATH  Google Scholar 

  27. Eppler, K.: Second derivatives and sufficient optimality conditions for shape functionals. Control Cybern. 29, 485–512 (2000)

    MathSciNet  MATH  Google Scholar 

  28. Eppler, K., Harbrecht, H.: A regularized Newton method in electrical impedance tomography using shape Hessian information. Control Cybern. 34, 203–225 (2005)

    MathSciNet  MATH  Google Scholar 

  29. Eppler, K., Harbrecht, H.: Efficient treatment of stationary free boundary problems. Appl. Numer. Math. 56, 1326–1339 (2006)

    MathSciNet  MATH  Google Scholar 

  30. Eppler, K., Harbrecht, H., Schneider, R.: On convergence in elliptic shape optimization. SIAM J. Control Optim. 46(1), 61–83 (2007)

    MathSciNet  MATH  Google Scholar 

  31. Eppler, K., Harbrecht, H.: Tracking Neumann data for stationary free boundary problems. SIAM J. Control Optim. 48, 2901–2916 (2009)

    MathSciNet  MATH  Google Scholar 

  32. Eppler, K., Harbrecht, H.: Tracking the Dirichlet data in \(L^2\) is an ill-posed problem. J. Optim. Theory Appl. 145, 17–35 (2010)

    MathSciNet  MATH  Google Scholar 

  33. Eppler, K., Harbrecht, H.: On a Kohn–Vogelius like formulation of free boundary problems. Comput. Optim. Appl. 52, 69–85 (2012)

    MathSciNet  MATH  Google Scholar 

  34. Eppler, K., Harbrecht, H.: Shape optimization for free boundary problems—analysis and numerics. Constrained Optim. Optim. Control Partial Differ. Equ. 160, 277–288 (2012)

    MathSciNet  MATH  Google Scholar 

  35. Fasano, A.: Some free boundary problems with industrial applications. In: Delfour, M. (ed.) Shape Optimization and Free Boundaries. Kluwer, Dordrecht (1992)

    Google Scholar 

  36. Flucher, M., Rumpf, M.: Bernoulli’s free-boundary problem, qualitative theory and numerical approximation. J. Reine Angew. Math. 486, 165–204 (1997)

    MathSciNet  MATH  Google Scholar 

  37. Friedrichs, K.O.: Über ein Minimumproblem für Potentialströmungen mit freiem Rand. Math. Ann. 109, 60–82 (1934)

    MathSciNet  MATH  Google Scholar 

  38. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Springer, Berlin (1998)

    MATH  Google Scholar 

  39. Grisvard, P.: Elliptic Problems in Nonsmooth Domains. Pitman Publishing, Marshfield (1985)

    MATH  Google Scholar 

  40. Haddar, H., Kress, R.: A conformal mapping algorithm for the Bernoulli free boundary value problem. Math. Methods Appl. Sci. 39, 2477–2487 (2016)

    MathSciNet  MATH  Google Scholar 

  41. Haslinger, J., Kozubek, T., Kunish, K., Peichl, G.H.: Shape optimization and fictitious domain approach for solving free-boundary value problems of Bernoulli type. Comput. Optim. Appl. 26, 231–251 (2003)

    MathSciNet  MATH  Google Scholar 

  42. Haslinger, J., Kozubek, T., Kunisch, K., Peichl, G.: An embedding domain approach for a class of 2-d shape optimization problems: mathematical analysis. J. Math. Anal. Appl. 209, 665–685 (2004)

    MathSciNet  MATH  Google Scholar 

  43. Haslinger, J., Mäkinen, R.A.E.: Introduction to Shape Optimization: Theory, Approximation, and Computation. SIAM, Philadelphia (2003)

    MATH  Google Scholar 

  44. Haslinger, J., Ito, K., Kozubek, T., Kunish, K., Peichl, G.H.: On the shape derivative for problems of Bernoulli type. Interfaces Free Bound. 11, 317–330 (2009)

    MathSciNet  MATH  Google Scholar 

  45. Hecht, F.: New development in FreeFem++. J. Numer. Math. 20, 251–265 (2012)

    MathSciNet  MATH  Google Scholar 

  46. Henrot, A., Pierre, M.: Shape Variation and Optimization: A Geometrical Analysis, Tracts in Mathematics 28. European Mathematical Society, Zürich (2018)

    MATH  Google Scholar 

  47. Henrot, A., Shahgholian, H.: Existence of classical solutions to a free boundary problem for the \(p\)-Laplace operator, I: the exterior convex case. J. Reine Angew. Math. 521, 85–97 (2000)

    MathSciNet  MATH  Google Scholar 

  48. Henrot, A., Shahgholian, H.: Convexity of free boundaries with Bernoulli type boundary condition. Nonlinear Anal. Theory Methods Appl. 28(5), 815–823 (1997)

    MathSciNet  MATH  Google Scholar 

  49. Hettlich, F., Rundell, W.: A second degree method for nonlinear inverse problems. SIAM J. Numer. Anal. 37(2), 587–620 (2000)

    MathSciNet  MATH  Google Scholar 

  50. Ito, K., Kunisch, K., Peichl, G.: Variational approach to shape derivative for a class of Bernoulli problem. J. Math. Anal. Appl. 314, 126–149 (2006)

    MathSciNet  MATH  Google Scholar 

  51. Ito, K., Kunisch, K., Peichl, G.: Variational approach to shape derivatives. ESAIM Control Optim. Calc. Var. 14, 517–539 (2008)

    MathSciNet  MATH  Google Scholar 

  52. Kashiwabara, T., Colciago, C.M., Dedè, L., Quarteroni, A.: Well-posedness, regularity, and convergence analysis of the finite element approximation of a generalized Robin boundary value problem. SIAM J. Numer. Anal. 53, 105–126 (2015)

    MathSciNet  MATH  Google Scholar 

  53. Kohn, R., Vogelius, M.: Determining conductivity by boundary measurements. Commun. Pure Appl. Math. 37, 289–298 (1984)

    MathSciNet  MATH  Google Scholar 

  54. Kress, R.: On Trefftz’ integral equation for the Bernoulli free boundary value problem. Numer. Math. 136, 503–522 (2017)

    MathSciNet  MATH  Google Scholar 

  55. Laurain, A., Privat, Y.: On a Bernoulli problem with geometric constraints. ESAIM Control Optim. Calc. Var. 18, 157–180 (2012)

    MathSciNet  MATH  Google Scholar 

  56. Málek, J., Nečas, J., Rokyta, M., Røužička, M.: Weak and Measure-valued Solutions to Evolutionary PDEs. Chapman & Hall, London (1996)

    MATH  Google Scholar 

  57. McLean, W.: Strongly Elliptic Systems and Boundary Integral Equations. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  58. Medková, D.: The Laplace Equation: Boundary Value Problems on Bounded and Unbounded Lipschitz Domains. Springer, Berlin (2018)

    MATH  Google Scholar 

  59. Nečas, J.: Direct Methods in the Theory of Elliptic Equations, Springer Monographs in Mathematics. Springer, Heidelberg (2012) (translated from the 1967 French original by Gerard Tronel and Alois Kufner; Editorial coordination and preface by Šárka Něcasová and a contribution by Christian G. Simader)

  60. Neuberger, J.W.: Sobolev Gradients and Differential Equations. Springer, Berlin (1997)

    MATH  Google Scholar 

  61. Nocedal, J., Wright, S.J.: Numerical Optimization. Springer, New York (2006)

    MATH  Google Scholar 

  62. Novruzi, A., Roche, J.-R.: Newton’s method in shape optimisation: a three-dimensional case. BIT Numer. Math. 40, 102–120 (2000)

    MathSciNet  MATH  Google Scholar 

  63. Novruzi, A., Pierre, M.: Structure of shape derivatives. J. Evol. Equ. 2, 365–382 (2002)

    MathSciNet  MATH  Google Scholar 

  64. Osher, S., Sethian, J.: Fronts propagating with curvature dependent speed: algorithms based on Hamilton–Jacobi formulations. J. Comput. Phys. 56, 12–49 (1998)

    MathSciNet  MATH  Google Scholar 

  65. Rabago, J.F.T., Bacani, J.B.: Shape optimization approach to the Bernoulli problem: a Lagrangian formulation. IAENG Int. J. Appl. Math. 47, 417–424 (2017)

    MathSciNet  Google Scholar 

  66. Rabago, J.F.T., Bacani, J.B.: Shape optimization approach for solving the Bernoulli problem by tracking the Neumann data: a Lagrangian formulation. Commun. Pure Appl. Anal. 17, 2683–2702 (2018)

    MathSciNet  MATH  Google Scholar 

  67. Rabago, J.F.T., Azegami, H.: An improved shape optimization formulation of the Bernoulli problem by tracking the Neumann data. J. Eng. Math. 117, 1–29 (2019)

    MathSciNet  MATH  Google Scholar 

  68. Rabago, J.F.T., Azegami, H.: A new energy-gap cost functional cost functional approach for the exterior Bernoulli free boundary problem. Evol. Equ. Control Theory 8(4), 785–824 (2019)

    MathSciNet  MATH  Google Scholar 

  69. Sauter, S.A., Schwab, C.: Boundary Element Methods. Springer, Berlin (2011)

    MATH  Google Scholar 

  70. Simon, J.: Second variation for domain optimization problems. In: Kappel, F., Kunisch, K., Schappacher, W. (eds.) Control and Estimation of Distributed Parameter Systems. International Series of Numerical Mathematics, vol. 91, pp. 361–378. Birkhäuser, Boston (1989)

    Google Scholar 

  71. Sokołowski, J., Zolésio, J.-P.: Introduction to Shape Optimization. In: Introduction to Shape Optimization. Springer Series in Computational Mathematics, vol. 16. Springer, Berlin (1992)

  72. Tiihonen, T.: Shape optimization and trial methods for free boundary problems. RAIRO Modél. Math. Anal. Numér. 31, 805–825 (1997)

    MathSciNet  MATH  Google Scholar 

  73. Trefftz, E.: Über die Kontraktion kreisförmiger Flüssigkeitsstrahlen. Z. Math. Phys. 64, 34–61 (1916)

    MATH  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the anonymous referee for carefully handling and examining the previous version of the manuscript. His/her valuable comments and suggestions greatly improved the quality of the paper. The first author greatly acknowledges the Japanese Ministry of Education, Culture, Sports, Science and Technology for scholarship support during his PhD program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julius Fergy T. Rabago.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix 1: Shape derivative of the adjoint state \(p_{{\mathrm{N}}}\)

Appendix 1: Shape derivative of the adjoint state \(p_{{\mathrm{N}}}\)

Let us first introduce some notations and present some properties of the operator \(T_t\) (see Sect. 3) that will be useful to our analysis. For \(t \in (0, \varepsilon )\) (\(\varepsilon > 0\) sufficiently small), the transformation \(T_t\) is invertible and \(T_t, T^{-1}_t \in {\mathscr {D}}^1({\mathbb {R}}^2, {\mathbb {R}}^2)\) (see, e.g., [10, Lemma 11]). In addition, the Jacobian matrix of the transformation \(T_t = T_t({\mathbf {V}})\) associated with the velocity field \({\mathbf {V}}\) denoted by \(\det \,DT_t(X)\) is strictly positive. Here, we shall use the notations \((DT_t)^{-1}\) and \((DT_t)^{-\top }\) to denote the inverse and inverse transpose of the Jacobian matrix \(DT_t\), respectively. Also, for convenience, we write \({A_t} = \det \,DT_t(X) (DT_t^{-1})(DT_t)^{-\top }\) and \({w_t} = \det \,DT_t(X) |(DT_t)^{-\top } {\mathbf {n}}|\) which represent the Jacobian matrix of \(T_t\) with respect to the boundary \(\partial \Omega\).

The following lemma, whose proof can be found in [22, 71], will also be essential to our analysis.

Lemma A.1

Let\({\mathbf {V}}\)be a fixed vector field in\(\Theta\) (see (9)) and\({I} = (-t_0, t_0)\), with\(t_0 > 0\)sufficiently small. Then, the following regularity properties of\(T_t\)hold

  1. (i)

    \(t \mapsto \det \,DT_t(X) \in C^1({I}, C({\bar{\Omega }}))\)

  2. (ii)

    \(t \mapsto {A_t} \in C^1({I}, C^1({\bar{\Omega }}))\)

  3. (iii)

    \(t \mapsto {w_t} \in C^1({I}, C(\Sigma ))\)

  4. (iv)

    \(\lim _{t\searrow 0} {w_t} = 1\)

  5. (v)

    \(\dfrac{{\mathrm{d}}}{{\mathrm{d}}t}{w_t}|_{t=0}=w'(0)={\mathrm{div}}_\Sigma {\mathbf {V}}\)

  6. (vi)

    \(\dfrac{{\mathrm{d}}}{{\mathrm{d}}t}{A_t}|_{t=0}=A'(0)\),

where\(A'(0)=({\mathrm{div}}\, {\mathbf {V}}){\mathbf {I}}_2 - (D {\mathbf {V}}+(D {\mathbf {V}})^{\top })\)and the limits defining the derivatives at\(t = 0\)exist uniformly in\(x \in {\bar{\Omega }}\).

Before we derive the shape derivative of \(p_{{\mathrm{N}}}\), and for completeness, let us first prove the unique solvability of the adjoint problem on the perturbed domain \(\Omega _t\).

Lemma A.2

For any\(t>0\)sufficiently small, the variational problem: find\(p_{{\mathrm{N}}}^t \in H^1(\Omega )\)such that\(p_{{\mathrm{N}}}^t = 0\)on\(\Gamma\)and

$$\begin{aligned} \int _{\Omega }{{A_t} \nabla p_{{\mathrm{N}}}^t \cdot \nabla \varphi }{\, \mathrm{d} x} - \int _{\Sigma }{{w_t}u_{\mathrm{N}}^t \varphi }{\, \mathrm{d} \sigma } = 0, \quad \forall \varphi \in H^1_{\Gamma ,0}(\Omega ). \end{aligned}$$
(66)

admits a unique solution\(p_{{\mathrm{N}}}^t\)in\(H^1(\Omega )\).

Proof

We first note that the variational problem being examined is obtained from the problem: find \(p_{\mathrm{N}t}\in H^1(\Omega _t)\) such that \(p_{\mathrm{N}t}= 0\) on \(\Gamma\) and

$$\begin{aligned} \int _{\Omega _t}{\nabla p_{\mathrm{N}t}\cdot \nabla \varphi }{\, \mathrm{d} x_t} - \int _{\Sigma _t}{u_{\mathrm{N}t}\varphi }{\, \mathrm{d} \sigma _t} = 0, \quad \forall \varphi \in H^1_{\Gamma ,0}(\Omega _t), \end{aligned}$$
(67)

via the application of domain and boundary transformation formulas (see, e.g., [71, Proposition 2.46–2.47]). In fact, the functions \(\phi _t:\Omega _t \rightarrow {\mathbb {R}}\) and \(\phi ^t: \Omega \rightarrow {\mathbb {R}}\) are related through the equation \(\phi ^t = \phi _t \circ T_t\). Hence, if \(p_{\mathrm{N}t}\) solves the variational equation (67), then \(p_{{\mathrm{N}}}^t = p_{\mathrm{N}t}\circ T_t\) satisfies (66). In addition, the boundary condition \(p_{{\mathrm{N}}}^t = p_{\mathrm{N}t}\circ T_t = 0\) on \(\Gamma\) implies that \(p_{{\mathrm{N}}}^t\) is actually in \(H^1_{\Gamma ,0}(\Omega )\).

Now, consider the bilinear form \(b_t(\cdot ,\cdot ): {\mathbf {H}}^1_{\Gamma ,0}(\Omega ) \rightarrow {\mathbb {R}}\) defined by

$$\begin{aligned} b_t(\phi ^t, \varphi ) = \int _{\Omega }{{A_t} \nabla \phi ^t\cdot \nabla \varphi }{\, \mathrm{d} x}, \quad \forall \phi ^t, \varphi \in H^1_{\Gamma ,0}(\Omega ). \end{aligned}$$
(68)

Note that, as a consequence of Lemma A.1, \({A_t}\) is bounded. Hence, it is clear that \(b_t(\cdot ,\cdot )\) is continuous because \(|b_t(\phi ^t, \varphi )| = \left| \int _{\Omega }{{A_t} \nabla \phi ^t\cdot \nabla \varphi }{\, \mathrm{d} x} \right| \lesssim \Vert {A_t}\Vert _{L^{\infty }(\Omega )} \Vert \phi ^t\Vert _{H^1(\Omega )} |\varphi |_{H^1(\Omega )}.\) Moreover, \(b_t(\cdot ,\cdot )\) is coercive. Indeed, from the fact that \({A_t} \rightarrow {\mathbf {I}}\) uniformly on \({\bar{\Omega }}\) as \(t \rightarrow 0\), we know that there exist sufficiently small values for \(t > 0\) such that \(\Vert {A_t} - {\mathbf {I}}\Vert _{L^{\infty }(\Omega )} < 1\). So, we have

$$\begin{aligned} b_t(\phi ^t, \phi ^t)&= \int _{\Omega }{{A_t} \nabla \phi ^t\cdot \nabla \phi ^t}{\, \mathrm{d} x} = \left| \int _{\Omega }{ ( {A_t} - {\mathbf {I}}) \nabla \phi ^t\cdot \nabla \phi ^t + | \nabla \phi ^t |^2}{\, \mathrm{d} x} \right| \\&\geqslant \Vert \nabla \phi ^t \Vert ^2_{L^2(\Omega )} - \Vert {A_t} - {\mathbf {I}}\Vert _{L^{\infty }(\Omega )} \Vert \nabla \phi ^t \Vert ^2_{L^2(\Omega )} \\&\gtrsim |\nabla \phi ^t|^2_{H^1(\Omega )}. \end{aligned}$$

Next, we consider the functional \(\omega :H^1_{\Gamma ,0}(\Omega ) \rightarrow {\mathbb {R}}\) defined by \(\langle \omega , \varphi \rangle = \int _{\Sigma }{{w_t}u_{\mathrm{N}}^t\varphi }{\, \mathrm{d} \sigma }\). Evidently, this functional is continuous because of the boundedness of \(|{w_t}|_{\infty }\) and due to the sequence of inequalities

$$\begin{aligned} \left| \int _{\Sigma }{{w_t}u_{\mathrm{N}}^t\varphi }{\, \mathrm{d} \sigma } \right| \lesssim |{w_t}|_{\infty } \Vert u_{\mathrm{N}}^t\Vert _{L^2(\Sigma )} \Vert \varphi \Vert _{L^2(\Sigma )} \lesssim |{w_t}|_{\infty } \Vert u_{\mathrm{N}}^t\Vert _{H^1(\Omega )} |\varphi |_{H^1(\Omega )}. \end{aligned}$$

Thus, by Lax–Milgram theorem, the function \(p_{{\mathrm{N}}}^t\), vanishing on \(\Gamma\), is the unique solution to the variational equation (66) in \(H^1(\Omega )\). This proves the lemma. \(\square\)

Proposition A.1

Let\(\Omega\)be a bounded\(C^{2,1}\)domain. The shape derivative of the adjoint state variable\(p_{{\mathrm{N}}}\in H^3(\Omega )\)at\(\Omega = \Omega ^*\)satisfying the mixed Dirichlet–Neumann problem (16) is a solution to the following mixed boundary value problem:

$$\begin{aligned} -\Delta p_{ {\mathrm{N}} W}' = 0 \ {\mathrm{in}} \ \Omega ^*,\quad p_{ \mathrm{N} W}' = 0 \ {\mathrm{on}} \ \Gamma ,\quad \partial _{{\mathbf {n}}}{p_{ {\mathrm{N}} W}'} = u_{ {\mathrm{N}} W}' + \lambda {\mathbf {W}}\cdot {\mathbf {n}}\quad {\mathrm{on}} \ \Sigma ^*. \end{aligned}$$

Proof

The proof mainly contains two parts; we first prove the existence of the material derivative of \(p_{{\mathrm{N}}}\), then we formally proceed on the derivation of its shape derivative.

Step 1. Existence of the material derivative of \(p_{{\mathrm{N}}}\). The variational formulation of (16) on the reference domain \(\Omega\) is given as follows: find \(p_{{\mathrm{N}}}\in H^1_{\Gamma ,0}(\Omega )\) such that

$$\begin{aligned} \int _{\Omega }{\nabla p_{{\mathrm{N}}}\cdot \nabla \varphi }{\, \mathrm{d} x} - \int _{\Sigma }{u_{\mathrm{N}}\varphi }{\, \mathrm{d} \sigma } = 0, \quad \forall \varphi \in H^1_{\Gamma ,0}(\Omega ). \end{aligned}$$
(69)

Subtracting (66) with \(t = 0\) from the case where \(t > 0\), for all \(\varphi \in H^1_{\Gamma ,0}(\Omega )\), we obtain

$$\begin{aligned} \int _{\Omega }{\{ {A_t} \nabla p_{{\mathrm{N}}}^t - \nabla p_{{\mathrm{N}}}^t + \nabla p_{{\mathrm{N}}}^t - \nabla p_{{\mathrm{N}}}\} \cdot \nabla \varphi }{\, \mathrm{d} x} - \int _{\Sigma }{ \{{w_t}u_{\mathrm{N}}^t - u_{\mathrm{N}}^t + u_{\mathrm{N}}^t - u_{\mathrm{N}}\} \varphi }{\, \mathrm{d} \sigma } = 0. \end{aligned}$$

Hence, we have a unique solution \(p_{{\mathrm{N}}}^t - p_{{\mathrm{N}}}\in H^1_{\Gamma ,0}(\Omega )\) to the variational equation

$$\begin{aligned}&\int _{\Omega }{ \nabla (p_{{\mathrm{N}}}^t - p_{{\mathrm{N}}}) \cdot \nabla \varphi }{\, \mathrm{d} x} = - \int _{\Omega }{ ( {A_t} - {\mathbf {I}}) \nabla p_{{\mathrm{N}}}^t \cdot \nabla \varphi }{\, \mathrm{d} x} \nonumber \\&\quad + \int _{\Sigma }{({w_t} - 1)u_{\mathrm{N}}^t\varphi }{\, \mathrm{d} \sigma } + \int _{\Sigma }{(u_{\mathrm{N}}^t - u_{\mathrm{N}}) \varphi }{\, \mathrm{d} \sigma }, \end{aligned}$$
(70)

for all \(\varphi \in H^1_{\Gamma ,0}(\Omega )\). We note that \(\nabla p_{{\mathrm{N}}}^t\) is uniformly bounded in \(L^2(\Omega ;{\mathbb {R}}^2)\) and we have the convergence \(\nabla p_{{\mathrm{N}}}^t \rightarrow \nabla p_{{\mathrm{N}}}\) also in that space. Indeed, using the boundedness of \(\Vert {A_t}\Vert _{L^{\infty }(\Omega )}\) from below, we get the estimate

$$\begin{aligned} \Vert \nabla p_{{\mathrm{N}}}^t\Vert _{L^2(\Omega )}^2 \lesssim \int _{\Omega }{{A_t} \nabla p_{{\mathrm{N}}}^t\cdot \nabla p_{{\mathrm{N}}}^t}{\, \mathrm{d} x} = \int _{\Sigma }{{w_t}u_{\mathrm{N}}^t p_{{\mathrm{N}}}^t}{\, \mathrm{d} \sigma } \lesssim |{w_t}|_{\infty } \Vert u_{\mathrm{N}}^t\Vert _{H^1(\Omega )} \Vert p_{{\mathrm{N}}}^t\Vert _{L^2(\Omega )}. \end{aligned}$$

Because \(u_{\mathrm{N}}^t\) is uniformly bounded in \(H^1(\Omega )\) (cf. [10, Theorem 23], see also [50, Proposition 3.1]), the uniform boundedness of \(\nabla p_{{\mathrm{N}}}^t\) in \(L^2(\Omega ;{\mathbb {R}}^2)\) immediately follows, and so the convergence \(\nabla p_{{\mathrm{N}}}^t \rightarrow \nabla p_{{\mathrm{N}}}\) in \(L^2(\Omega ;{\mathbb {R}}^2)\). Next, we divide both sides of (70) by t and denote \(\phi ^t := \frac{1}{t} (p_{{\mathrm{N}}}^t - p_{{\mathrm{N}}})\) to obtain

$$\begin{aligned}&\int _{\Omega }{ \nabla \phi ^t \cdot \nabla \varphi }{\, \mathrm{d} x} = - \int _{\Omega }{ \left( \frac{{A_t} - {\mathbf {I}}}{t} \right) \nabla p_{{\mathrm{N}}}^t \cdot \nabla \varphi }{\, \mathrm{d} x} + \int _{\Sigma }{\left( \frac{ {w_t} - 1 }{t} \right) u_{\mathrm{N}}^t\varphi }{\, \mathrm{d} \sigma } \\&\quad + \int _{\Sigma }{\left( \frac{u_{\mathrm{N}}^t - u_{\mathrm{N}}}{t}\right) \varphi }{\, \mathrm{d} \sigma }, \end{aligned}$$

for all \(\varphi \in H^1_{\Gamma ,0}(\Omega )\). We choose a sequence \(\{t_n\}\) such that \(t_n \rightarrow 0\) as \(n \rightarrow \infty\). Our goal is to show that the limit \(\lim _{n \rightarrow \infty } \phi ^t\) exists. Using the boundedness of \(\frac{1}{t_n} \left( {A_t} - {\mathbf {I}} \right)\) and \(\frac{1}{t_n} \left( {w_t} - 1\right)\) in \(L^{\infty }\), we deduce that \(\nabla p_{{\mathrm{N}}}^{t_n}\) is bounded in \(L^2(\Omega ;{\mathbb {R}}^2)\), and thus the boundedness of \(\phi ^{t_n}\) in \(H^1_{\Gamma ,0}(\Omega )\). Hence, we can extract a subsequence, which we still denote by \(\{t_n\}\), such that \(\lim _{n \rightarrow \infty } t_n = 0\). Moreover, there exists an element \(\phi\) of \(H^1_{\Gamma ,0}(\Omega )\) such that \(\phi ^{t_n} \rightharpoonup \phi\) weakly in \(H^1_{\Gamma ,0}(\Omega )\). From the convergences \(\nabla p_{{\mathrm{N}}}^{t_n} \rightarrow \nabla p_{{\mathrm{N}}}\) in \(L^2(\Omega ;{\mathbb {R}}^2)\) and \(u_{\mathrm{N}}^{t_n} \rightarrow u_{\mathrm{N}}\) in \(L^2(\Sigma )\), together with Lemma A.1(v)–(vi), we get

$$\begin{aligned} \int _{\Omega }{ \nabla \phi \cdot \nabla \varphi }{\, \mathrm{d} x} = - \int _{\Omega }{ A \nabla p_{{\mathrm{N}}}\cdot \nabla \varphi }{\, \mathrm{d} x} + \int _{\Sigma }{ u_{\mathrm{N}}\varphi {\mathrm{div}}_{\Sigma } {\mathbf {W}}}{\, \mathrm{d} \sigma } + \int _{\Sigma }{ {\dot{u}}_{\mathrm{N}}\varphi }{\, \mathrm{d} \sigma }, \end{aligned}$$

for all \(\varphi \in H^1_{\Gamma ,0}(\Omega )\), where \({\dot{u}}_{\mathrm{N}}= \lim _{t\searrow 0} \frac{1}{t} (u_{\mathrm{N}}^t - u_{\mathrm{N}})\) which is exactly the material derivative of \(u_{\mathrm{N}}\) at \(t = 0\) in the direction \({\mathbf {W}}\). This function exists and is actually an element of \(H^1_{\Gamma ,0}(\Omega )\) as shown, for example, in [9]. Hence, the above equation admits a unique solution in \(H^1(\Omega )\) and we deduce that \(\phi ^{t_n} \rightharpoonup \phi\) for any sequence \(\{t_n\}\). This implies the strong convergence of \(\phi ^{t_n}\) to \(\phi\) in \(L^2(\Sigma )\). Now, taking \(\varphi = \phi ^{t_n} \in H^1_{\Gamma ,0}(\Omega )\), we obtain

$$\begin{aligned} \lim _{t_n \rightarrow 0} |\phi ^{t_n}|_{H^1(\Omega )}^2&= - \lim _{t_n \rightarrow 0} \left\{ \int _{\Omega }{ \left( \frac{A({t_n}) - {\mathbf {I}}}{{t_n}} \right) \nabla p_{{\mathrm{N}}}^{t_n} \cdot \nabla \phi ^{t_n}}{\, \mathrm{d} x} \right\} \\&\quad + \lim _{t_n \rightarrow 0} \left\{ \int _{\Sigma }{\left( \frac{ w({t_n}) - 1 }{{t_n}} \right) u_{\mathrm{N}}^{t_n} \phi ^{t_n}}{\, \mathrm{d} \sigma } \right\} \\&\quad + \lim _{t_n \rightarrow 0} \left\{ \int _{\Sigma }{\left( \frac{u_{\mathrm{N}}^{t_n} - u_{\mathrm{N}}}{{t_n}}\right) \phi ^{t_n}}{\, \mathrm{d} \sigma } \right\} \\&= - \int _{\Omega }{ A \nabla p_{{\mathrm{N}}}\cdot \nabla \phi }{\, \mathrm{d} x} + \int _{\Sigma }{ u_{\mathrm{N}}\phi \mathrm{div}_{\Sigma } {\mathbf {W}}}{\, \mathrm{d} \sigma } + \int _{\Sigma }{ {\dot{u}}_{\mathrm{N}}\phi }{\, \mathrm{d} \sigma } = |\phi |_{H^1(\Omega )}. \end{aligned}$$

The norm convergence and the weak convergence of \(\phi ^{t_n}\) in \(H^1_{\Gamma ,0}(\Omega )\) implies the strong convergence of \(\phi ^{t_n}\) to \(\phi \in H^1_{\Gamma ,0}(\Omega )\). This guarantees the existence of the material derivative of \(p_{{\mathrm{N}}}\).

Step 2. Computing the shape derivative of \(p_{{\mathrm{N}}}\) at \(\Omega = \Omega ^*\)along the deformation field \({\mathbf {W}}\). From the previous step, we showed the existence of the material derivative of \(p_{{\mathrm{N}}}\) in \(H^1_{\Gamma ,0}(\Omega )\). Denoting this derivative by \({\dot{p}}_{\mathrm{N}}\), we know that it satisfies the variational equation

$$\begin{aligned}&\int _{\Omega }{ \nabla {\dot{p}}_{\mathrm{N}}\cdot \nabla \varphi }{\, \mathrm{d} x} = - \int _{\Omega }{ A \nabla p_{{\mathrm{N}}}\cdot \nabla \varphi }{\, \mathrm{d} x} + \int _{\Sigma }{ u_{\mathrm{N}}\varphi {\mathrm{div}}_{\Sigma } {\mathbf {W}}}{\, \mathrm{d} \sigma } \nonumber \\&\quad + \int _{\Sigma }{ {\dot{u}}_{\mathrm{N}}\varphi }{\, \mathrm{d} \sigma }, \quad \forall \varphi \in H^1_{\Gamma ,0}(\Omega ). \end{aligned}$$
(71)

In addition, it is clear that \({\dot{p}}_{\mathrm{N}}= 0\) on \(\Gamma\). Applying Green’s formula to the above variational form, we get

$$\begin{aligned}&- \int _{\Omega }{ \varphi \Delta {\dot{p}}_{\mathrm{N}}}{\, \mathrm{d} x} + \int _{\Sigma }{\varphi \partial _{{\mathbf {n}}}{{\dot{p}}_{\mathrm{N}}}}{\, \mathrm{d} \sigma } = \int _{\Omega }{ \varphi {\mathrm{div}}(A \nabla p_{{\mathrm{N}}})}{\, \mathrm{d} x} - \int _{\Sigma }{ \varphi A \partial _{{\mathbf {n}}}{p_{{\mathrm{N}}}}}{\, \mathrm{d} \sigma }\\&\quad + \int _{\Sigma }{ u_{\mathrm{N}}\varphi {\mathrm{div}}_{\Sigma } {\mathbf {W}}}{\, \mathrm{d} \sigma } + \int _{\Sigma }{ {\dot{u}}_{\mathrm{N}}\varphi }{\, \mathrm{d} \sigma }, \quad \forall \varphi \in H^1_{\Gamma ,0}(\Omega ). \end{aligned}$$

First, let us choose \(\varphi \in H^1_0(\Omega )\). Then, we have \(- \int _{\Omega }{ \varphi \Delta {\dot{p}}_{\mathrm{N}}}{\, \mathrm{d} x} = \int _{\Omega }{ \varphi {\mathrm{div}}(A \nabla p_{{\mathrm{N}}})}{\, \mathrm{d} x}\). Since, \(H^1_0(\Omega )\) is dense in \(L^2(\Omega )\), we obtain \(- \Delta {\dot{p}}_{\mathrm{N}}= {\mathrm{div}}(A \nabla p_{{\mathrm{N}}})\) in \(\Omega\). Next, we choose \(\varphi \in H^1_{\Gamma ,0}(\Omega )\) such that \(\varphi\) is arbitrary in \(\Sigma\). This gives us

$$\begin{aligned} \int _{\Sigma }{\varphi \partial _{{\mathbf {n}}}{{\dot{p}}_{\mathrm{N}}}}{\, \mathrm{d} \sigma } = - \int _{\Sigma }{ \varphi A \partial _{{\mathbf {n}}}{p_{{\mathrm{N}}}}}{\, \mathrm{d} \sigma } + \int _{\Sigma }{ u_{\mathrm{N}}\varphi {\mathrm{div}}_{\Sigma } {\mathbf {W}}}{\, \mathrm{d} \sigma } + \int _{\Sigma }{ {\dot{u}}_{\mathrm{N}}\varphi }{\, \mathrm{d} \sigma }. \end{aligned}$$

Because the traces of functions in \(H^1_{\Gamma ,0}(\Omega )\) are dense in \(L^2(\Sigma )\), we arrive at \(\partial _{{\mathbf {n}}}{{\dot{p}}_{\mathrm{N}}} = -A \partial _{{\mathbf {n}}}{p_{{\mathrm{N}}}} + u_{\mathrm{N}}{\mathrm{div}}_{\Sigma } {\mathbf {W}}+ {\dot{u}}_{\mathrm{N}}\) on \(\Sigma\). Summarizing these results, we see that \({\dot{p}}_{\mathrm{N}}\) satisfies the following boundary value problem:

$$\begin{aligned} -\Delta {\dot{p}}_{\mathrm{N}}= {\mathrm{div}}(A \nabla p_{{\mathrm{N}}}) \ {\mathrm{in}} \ \Omega ,\quad {\dot{p}}_{\mathrm{N}}= 0 \ {\mathrm{on}} \ \Gamma ,\quad \partial _{{\mathbf {n}}}{{\dot{p}}_{\mathrm{N}}} = -A \partial _{{\mathbf {n}}}{p_{{\mathrm{N}}}} + u_{\mathrm{N}}{\mathrm{div}}_{\Sigma } {\mathbf {W}}+ {\dot{u}}_{\mathrm{N}}\quad {\mathrm{on}} \ \Sigma . \end{aligned}$$

From above equations, and due to the fact that \({\mathbf {W}}\) vanishes on \(\Gamma\), we immediately obtain [in view of the identity (12)] \(p_{{\mathrm{N}}}' = {\dot{p}}_{\mathrm{N}}- {\mathbf {W}}\cdot \nabla p_{{\mathrm{N}}}= 0\) on \(\Gamma\). Now, we consider \(\varphi \in H^2(\Omega )\). Note that for \(C^{1,1}\) domain, we have that \(u_{\mathrm{N}}\in H^2(\Omega )\) (see [10, Theorem 29] and also [50]). Hence, \(u_{\mathrm{N}}\in H^{3/2}(\Sigma )\) which, in turn, means that \(p_{{\mathrm{N}}}\in H^2(\Omega )\) by standard elliptic regularity theory. Given this regularity of \(p_{{\mathrm{N}}}\) and since \(-\Delta p_{{\mathrm{N}}}= 0\) in \(\Omega\), we can therefore write \(- \int _{\Omega }{ A \nabla p_{{\mathrm{N}}}\cdot \nabla \varphi }{\, \mathrm{d} x}\) as follows (see [50, Lemma 4.1])

$$\begin{aligned}&- \int _{\Omega }{ A \nabla p_{{\mathrm{N}}}\cdot \nabla \varphi }{\, \mathrm{d} x} = \int _{\Omega }{ \nabla ({\mathbf {W}}\cdot \nabla p_{{\mathrm{N}}}) \cdot \nabla \varphi }{\, \mathrm{d} x} + \int _{\Sigma }{ \partial _{{\mathbf {n}}}{p_{{\mathrm{N}}}} ({\mathbf {W}}\cdot \nabla \varphi ) }{\, \mathrm{d} \sigma } \nonumber \\&\quad - \int _{\Sigma }{ (\nabla p_{{\mathrm{N}}}\cdot \nabla \varphi ) {\mathbf {W}}\cdot {\mathbf {n}}}{\, \mathrm{d} \sigma }, \end{aligned}$$
(72)

for all \(\varphi \in H^2(\Omega )\). Hence, using the identity (12), we have the equation

$$\begin{aligned} \int _{\Omega }{ \nabla {\dot{p}}_{\mathrm{N}}\cdot \nabla \varphi }{\, \mathrm{d} x} = \int _{\Omega }{ \nabla p_{{\mathrm{N}}}' \cdot \nabla \varphi }{\, \mathrm{d} x} + \int _{\Omega }{ \nabla ({\mathbf {W}}\cdot \nabla p_{{\mathrm{N}}}) \cdot \nabla \varphi }{\, \mathrm{d} x}, \quad \forall \varphi \in H^1_{\Gamma ,0}(\Omega ). \end{aligned}$$

Combining this equation with (71) and (72) yields

$$\begin{aligned}&\int _{\Omega }{ \nabla ({\mathbf {W}}\cdot \nabla p_{{\mathrm{N}}}) \cdot \nabla \varphi }{\, \mathrm{d} x} + \int _{\Sigma }{ \partial _{{\mathbf {n}}}{p_{{\mathrm{N}}}} ({\mathbf {W}}\cdot \nabla \varphi ) }{\, \mathrm{d} \sigma } - \int _{\Sigma }{ (\nabla p_{{\mathrm{N}}}\cdot \nabla \varphi ) {\mathbf {W}}\cdot {\mathbf {n}}}{\, \mathrm{d} \sigma }\\&\qquad + \int _{\Sigma }{ u_{\mathrm{N}}\varphi {\mathrm{div}}_{\Sigma } {\mathbf {W}}}{\, \mathrm{d} \sigma } + \int _{\Sigma }{ {\dot{u}}_{\mathrm{N}}\varphi }{\, \mathrm{d} \sigma }\\&\quad = \int _{\Omega }{ \nabla p_{{\mathrm{N}}}' \cdot \nabla \varphi }{\, \mathrm{d} x} + \int _{\Omega }{ \nabla ({\mathbf {W}}\cdot \nabla p_{{\mathrm{N}}}) \cdot \nabla \varphi }{\, \mathrm{d} x}, \quad \forall \varphi \in H^2 \cap H^1_{\Gamma ,0}(\Omega ). \end{aligned}$$

Applying Green’s formula on the right side of the above equation we arrive at

$$\begin{aligned}&- \int _{\Omega }{ \varphi \Delta p_{{\mathrm{N}}}' }{\, \mathrm{d} x} + \int _{\Sigma }{ \varphi \partial _{{\mathbf {n}}}{p_{{\mathrm{N}}}'} }{\, \mathrm{d} \sigma } = \int _{\Sigma }{ \partial _{{\mathbf {n}}}{p_{{\mathrm{N}}}} ({\mathbf {W}}\cdot \nabla \varphi ) }{\, \mathrm{d} \sigma } - \int _{\Sigma }{ (\nabla p_{{\mathrm{N}}}\cdot \nabla \varphi ) {\mathbf {W}}\cdot {\mathbf {n}}}{\, \mathrm{d} \sigma }\\&\quad + \int _{\Sigma }{ u_{\mathrm{N}}\varphi {\mathrm{div}}_{\Sigma } {\mathbf {W}}}{\, \mathrm{d} \sigma } + \int _{\Sigma }{ {\dot{u}}_{\mathrm{N}}\varphi }{\, \mathrm{d} \sigma }, \quad \forall \varphi \in H^2 \cap H^1_{\Gamma ,0}(\Omega ). \end{aligned}$$

Now, we choose \(\varphi \in C^{\infty }_0(\Omega )\). This leads us to \(- \Delta p_{{\mathrm{N}}}' = 0\) in \(\Omega\). Moreover, we get

$$\begin{aligned} \int _{\Sigma }{ \varphi \partial _{{\mathbf {n}}}{p_{{\mathrm{N}}}'} }{\, \mathrm{d} \sigma } = \int _{\Sigma }{ (u_{\mathrm{N}}{\mathbf {W}}- \nabla p_{{\mathrm{N}}}{\mathbf {W}}\cdot {\mathbf {n}})\cdot \nabla \varphi }{\, \mathrm{d} \sigma } + \int _{\Sigma }{ u_{\mathrm{N}}\varphi {\mathrm{div}}_{\Sigma } {\mathbf {W}}}{\, \mathrm{d} \sigma } + \int _{\Sigma }{ {\dot{u}}_{\mathrm{N}}\varphi }{\, \mathrm{d} \sigma }. \end{aligned}$$

Observe that \((u_{\mathrm{N}}{\mathbf {W}}- \nabla p_{{\mathrm{N}}}{\mathbf {W}}\cdot {\mathbf {n}})\cdot {\mathbf {n}}= 0\). Hence, we can replace \(\nabla \varphi |_{\Sigma }\) by the tangential gradient \(\nabla _{\Sigma } \varphi\). Using the tangential Green’s formula (see equation 21) thrice, noting that \({\mathbf {W}}\cdot {\mathbf {n}}\nabla _{\Sigma }p_{{\mathrm{N}}}\cdot {\mathbf {n}}= 0\), and then using the relation \({\dot{u}}_{\mathrm{N}}= u_{\mathrm{N}}' + {\mathbf {W}}\cdot \nabla u_{\mathrm{N}}\), we obtain

$$\begin{aligned}&\int _{\Sigma }{ \varphi \partial _{{\mathbf {n}}}{p_{{\mathrm{N}}}'} }{\, \mathrm{d} \sigma } = \int _{\Sigma }{ \varphi \mathrm{div}_{\Sigma }(\nabla p_{{\mathrm{N}}}{\mathbf {W}}\cdot {\mathbf {n}}) }{\, \mathrm{d} \sigma } + \int _{\Sigma }{ {\dot{u}}_{\mathrm{N}}\varphi }{\, \mathrm{d} \sigma }\\&\quad = \int _{\Sigma }{ \varphi \kappa (\nabla p_{{\mathrm{N}}}{\mathbf {W}}\cdot {\mathbf {n}})\cdot {\mathbf {n}}}{\, \mathrm{d} \sigma } - \int _{\Sigma }{ (\nabla _{\Sigma } \varphi \cdot \nabla p_{{\mathrm{N}}}) {\mathbf {W}}\cdot {\mathbf {n}}}{\, \mathrm{d} \sigma } + \int _{\Sigma }{ {\dot{u}}_{\mathrm{N}}\varphi }{\, \mathrm{d} \sigma }\\&\quad = \int _{\Sigma }{ \varphi \kappa u_{\mathrm{N}}{\mathbf {W}}\cdot {\mathbf {n}}}{\, \mathrm{d} \sigma } - \int _{\Sigma }{ (\nabla _{\Sigma } \varphi \cdot \nabla _{\Sigma } p_{{\mathrm{N}}}) {\mathbf {W}}\cdot {\mathbf {n}}}{\, \mathrm{d} \sigma } + \int _{\Sigma }{ {\dot{u}}_{\mathrm{N}}\varphi }{\, \mathrm{d} \sigma }\\&\quad = \int _{\Sigma }{ \varphi \kappa u_{\mathrm{N}}{\mathbf {W}}\cdot {\mathbf {n}}}{\, \mathrm{d} \sigma } + \int _{\Sigma }{ \varphi \mathrm{div}_{\Sigma }(\nabla _{\Sigma }p_{{\mathrm{N}}}{\mathbf {W}}\cdot {\mathbf {n}}) }{\, \mathrm{d} \sigma } + \int _{\Sigma }{ (u_{\mathrm{N}}' + {\mathbf {W}}\cdot \nabla u_{\mathrm{N}}) \varphi }{\, \mathrm{d} \sigma }, \end{aligned}$$

for all \(\varphi \in H^2 \cap H^1_{\Gamma ,0}(\Omega )\). Since the trace of functions from \(H^2(\Omega )\) is dense in \(L^2(\Sigma )\), we deduce the boundary condition on for \(p_{{\mathrm{N}}}'\) given by \(\partial _{{\mathbf {n}}}{p_{{\mathrm{N}}}'} = {\mathrm{div}}_{\Sigma }(\nabla _{\Sigma }p_{{\mathrm{N}}}{\mathbf {W}}\cdot {\mathbf {n}}) + \kappa u_{\mathrm{N}}{\mathbf {W}}\cdot {\mathbf {n}}+ u_{\mathrm{N}}' + {\mathbf {W}}\cdot \nabla u_{\mathrm{N}}.\) Summarizing these results, and letting \(\Omega = \Omega ^*\), we get

$$\begin{aligned} -\Delta p_{{\mathrm{N}}}' = 0 \ {\mathrm{in}} \ \Omega ^*,\quad p_{{\mathrm{N}}}' = 0 \ {\mathrm{on}} \ \Gamma ,\quad \partial _{{\mathbf {n}}}{p_{{\mathrm{N}}}'} = u_{\mathrm{N}}' + \lambda {\mathbf {W}}\cdot {\mathbf {n}}\quad {\mathrm{on}} \ \Sigma ^*, \end{aligned}$$

as desired. \(\square\)

It is worth remarking that the existence of the shape derivative \(p_{{\mathrm{N}}}'\) of \(p_{{\mathrm{N}}}\) can only be justified if \(u_{\mathrm{N}}\) is \(H^3\)-regular. Hence, we require that \(\Omega\) be at least of class \(C^{2,1}\) so that \(u_{\mathrm{N}}\) (as well as \(u_{\mathrm{R}}\)) is in \(H^3(\Omega )\) (see, e.g., [10, Theorem 29]).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rabago, J.F.T., Azegami, H. A second-order shape optimization algorithm for solving the exterior Bernoulli free boundary problem using a new boundary cost functional. Comput Optim Appl 77, 251–305 (2020). https://doi.org/10.1007/s10589-020-00199-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-020-00199-7

Keywords

Navigation