Skip to main content
Log in

Diagonal BFGS updates and applications to the limited memory BFGS method

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

We propose two diagonal BFGS-type updates. One is the diagonal part of the ordinary BFGS update on a diagonal matrix. The other is its inverse version. Both diagonal updates preserve the positive definiteness as the ordinary BFGS update. The related diagonal BFGS methods can be regarded as extensions of the well-known Barzilai-Borwein method. Under appropriate conditions, we prove that both diagonal BFGS methods are globally convergent when applied to minimizing a convex or non-convex function. In addition, the diagonal quasi-Newton method with inverse diagonal BFGS update can be even superlinearly convergent if the function to be minimized is uniformly convex and completely separable. We apply the proposed diagonal BFGS updates to the limited memory BFGS (L-BFGS) method using the diagonal BFGS matrix as initial matrix. Our numerical results show the efficiency of the L-BFGS methods with diagonal BFGS updates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The CUTEst dataset and L-BFGS code used in this paper are openly available at (https://github.com/ralna/CUTEst) and (https://github.com/ganguli-lab/minFunc), respectively. All other data supporting the findings of this study are available within the article.

References

  1. Andrei, N.: A diagonal quasi-Newton method based on minimizing the measure function of Byrd and Nocedal for unconstatined optimization. Optimization 67, 1553–1568 (2018)

    Article  MathSciNet  Google Scholar 

  2. Andrei, N.: A new diagonal quasi-Newton updating method with scaled forward finite differences directional derivative for unconstrained optimization. Numer. Funct. Anal. Optim. 40, 1467–1488 (2019)

    Article  MathSciNet  Google Scholar 

  3. Andrei, N.: A diagonal quasi-Newton updating method for unconstrained optimization. Numer. Algor. 81, 575–590 (2019)

    Article  MathSciNet  Google Scholar 

  4. Al-Baali, M.: Improved Hessian approximations for the limited memory BFGS method. Numer. Algor. 22, 99–112 (1999)

    Article  MathSciNet  Google Scholar 

  5. Barzilai, J., Borwein, L.M.: Two-point step size gradient methods. IMA J. Numer. Anal. 8, 141–148 (1988)

    Article  MathSciNet  Google Scholar 

  6. Burdakov, O., Gong, L.-J., Zikrin, S., Yuan, Y.-X.: On efficiently combining limited-memory and trust-region techniques. Math. Progr. Comput. 9, 101–134 (2017)

    Article  MathSciNet  Google Scholar 

  7. Dai, Y.: Alternate step gradient method. Optimization 52, 395–415 (2003)

    Article  MathSciNet  Google Scholar 

  8. Dai, Y., Fletcher, R.: Projected Barzilai-Borwein methods for large-scale box-constrained quadratic programming. Numer. Mathematik 100, 21–47 (2005)

    Article  MathSciNet  Google Scholar 

  9. Dai, Y., Hager, W.W., Zhang, H.: The cyclic Barzilai-Borwein method for unconstrained optimization. IMA J. Numer. Anal. 26, 604–627 (2006)

    Article  MathSciNet  Google Scholar 

  10. Dai, Y.H., Liao, L.-Z.: R-linear convergence of the barzilai and borwein gradient method. IMA J. Numer. Anal. 22, 1–10 (2002)

    Article  MathSciNet  Google Scholar 

  11. Dai, Y., Yuan, J., Yuan, Y.-X.: Modified two-point step size gradient methods for unconstrained optimization. Comput. Optim. Appl. 22, 103–109 (2002)

    Article  MathSciNet  Google Scholar 

  12. Dennis, J.E., Jr., Moré, J.J.: Quasi-Newton methods, motivation and theory. SIAM Rev. 19, 46–89 (1977)

    Article  MathSciNet  Google Scholar 

  13. Dennis, J.E., Jr., Wolkowicz, H.: Sizing and least change secant update. SIAM J. Numer. Anal. 30, 1291–1314 (1993)

    Article  MathSciNet  Google Scholar 

  14. Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles. Math. Progr. 91, 201–213 (2002)

    Article  MathSciNet  Google Scholar 

  15. Enshaei, S., Leong, W.J., Farid, M.: Diagonal quasi-Newton method via variational principle under generalized Frobenius norm. Optim. Methods Softw. 31, 1258–1271 (2016)

    Article  MathSciNet  Google Scholar 

  16. Fletcher, R.: Low storage methods for unconstrained optimization, in lectures in applied mathematics (AMS), vol. 26, pp. 165–179. American Mathematical Society, Providence, RI (1990)

    Google Scholar 

  17. Friedlander, A., Martłnez, J.M., Raydan, M.: Gradient method with retards and generalizations. SIAM J. Numer. Anal. 36, 275–289 (1999)

    Article  MathSciNet  Google Scholar 

  18. Gilbert, J.-Ch., Lemaréchal, C.: Some numerical experiments with variable storage quasi-Newton algorithms. Math. Progr. 45, 407–435 (1989)

    Article  MathSciNet  Google Scholar 

  19. Gill, P.E., Murray, W., Conjugate gradient methods for large-scale nonlinear optimization, Technical Report SOL,: 79–15. Stanford University, Stanford, CA, USA, Department of Operations Research (1979)

  20. Gould, N.I., Orban, D., Toint, Ph.: Cutest: a constrained and unconstrained testing environment with safe threads for mathematical optimization. Comput. Optim. Appl. 60, 545–557 (2015)

    Article  MathSciNet  Google Scholar 

  21. Li, D.H., Fukushima, M.: On the global convergence of BFGS method for nonconvex unconstrained optimization problems. SIAM J. Optim. 11, 1054–1064 (2001)

    Article  MathSciNet  Google Scholar 

  22. Li, D.H., Fukushima, M.: A modified BFGS method and its global convergence in nonconvex minimization. J. Comput. Appl. Math. 129, 15–35 (2001)

    Article  MathSciNet  Google Scholar 

  23. Liu, D.C., Nocedal, J.: On the limited memory BFGS method for large scale optimization. Math. Progr. 45, 503–528 (1989)

    Article  MathSciNet  Google Scholar 

  24. Luenberger, D.G.: Linear and nonlinear programming, 2nd edn. Addison-Wesley, Reading, MA (1994)

    MATH  Google Scholar 

  25. Leong, W.J., Farid, M., Hassan, M.A.: Scaling on diagonal quasi-Newton update for large-scale unconstrained optimization. Bull. Malay. Math. Sci. Soc. 35, 247–256 (2012)

    MathSciNet  MATH  Google Scholar 

  26. Nocedal, J.: Updating quasi-Newton matrices with limited storage. Math. Comput. 35, 773–782 (1980)

    Article  MathSciNet  Google Scholar 

  27. Nocedal, J., Wright, S.J.: Numerical optimization, 2nd edn. Springer-Verlag, New York Inc (1999)

    Book  Google Scholar 

  28. Raydan, M.: On the Barzilai and Borwein choice of steplength for the gradient method. IMA J. Numer. Anal. 13, 321–326 (1993)

    Article  MathSciNet  Google Scholar 

  29. Raydan, M.: The Barzilai and Borwein gradient method for the large scale unconstrained minimization problem. SIAM J. Optim. 7, 26–33 (1997)

    Article  MathSciNet  Google Scholar 

  30. Schmidt,M.: minFunc: unconstrained differentiable multivariate optimization in Matlab, http://www.cs.ubc.ca/ schmidtm/Software/minFunc.html, (2005)

  31. Yuan, Y.-X.: A new step size for the steepest descent method. J. Comput. Math. 24, 149–156 (2006)

    MathSciNet  MATH  Google Scholar 

  32. Zhu, M., Nazareth, J.L., Wolkowicz, H.: The quasi-Cauchy relation and diagonal updating. SIAM J. Optim. 9, 1192–1204 (1999)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Supported by the Chinese NSF grant 11771157. The authors would like to thank the editor and anonymous referees for their very helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaozhou Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, D., Wang, X. & Huang, J. Diagonal BFGS updates and applications to the limited memory BFGS method. Comput Optim Appl 81, 829–856 (2022). https://doi.org/10.1007/s10589-022-00353-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-022-00353-3

Keywords

Navigation