Skip to main content
Log in

DARN! A Weighted Constraint Solver for RNA Motif Localization

  • Published:
Constraints Aims and scope Submit manuscript

Abstract

Following recent discoveries about the important roles of non-coding RNAs (ncRNAs) in the cellular machinery, there is now great interest in identifying new occurrences of ncRNAs in available genomic sequences. In this paper, we show how the problem of finding new occurrences of characterized ncRNAs can be modeled as the problem of finding all locally-optimal solutions of a weighted constraint network using dedicated weighted global constraints, encapsulating pattern-matching algorithms and data structures. This is embodied in DARN!, a software tool for ncRNA localization, which, compared to existing pattern-matching based tools, offers additional expressivity (such as enabling RNA–RNA interactions to be described) and improved specificity (through the exploitation of scores and local optimality) without compromises in CPU efficiency. This is demonstrated on the actual search for tRNAs and H/ACA sRNA on different genomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abouelhoda, M., Kurtz, S., & Ohlebusch E. (2004). Replacing suffix trees with enhanced suffix arrays. Journal of Discrete Algorithms, 2, 53–86.

    Article  MathSciNet  MATH  Google Scholar 

  2. Altschul, S., Gish, W., Miller, W., Myers, E., & Lipman D. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215, 403–410.

    Google Scholar 

  3. Billoud, B., Kontic, M., & Viari, A. (1996). Palingol: A declarative programming language to describe nucleic acids’ secondary structures and to scan sequence database. Nucleic Acids Research, 24(8), 1395–1403.

    Article  Google Scholar 

  4. Cherry, J., Ball, C., Weng, S., Juvik, G., Schmidt, R., Adler, C., et al. (1997). Genetic and physical maps of Saccharomyces cerevisiae. Nature, 387(6632 Suppl), 67–73.

    Google Scholar 

  5. Dsouza, M., Larsen, N., & Overbeek, R. (1997). Searching for patterns in genomic data. Trends in Genetics, 13(12).

  6. Eddy, S. (1996). Rnabob: A program to search for RNA secondary structure motifs in sequence databases. http://bioweb.pasteur.fr/docs/man/man/rnabob.1.html#toc1

  7. Eddy, S., & Durbin, R. (1994). RNA sequence analysis using covariance models. Nucleic Acids Research, 22(11), 2079–2088.

    Article  Google Scholar 

  8. Griffiths-Jones, S., Moxon, S., Marshall, M., Khanna, A., Eddy, S., & Bateman, A. (2005). Rfam: Annotating non-coding RNAs in complete genomes. Nucleic Acids Research, 33, D121–D124.

    Article  Google Scholar 

  9. Laferrière, A., Gautheret, D., & Cedergren R. (1994). An RNA pattern matching program with enhanced performance and portability. Computer Applications in Biosciences, 10(2), 211–212.

    Google Scholar 

  10. Larrosa, J., & Schiex, T. (2004). Solving weighted CSP by maintaining arc-consistency. Artificial Intelligence, 159(1–2), 1–26.

    Article  MathSciNet  MATH  Google Scholar 

  11. Lhomme, O. (1993). Consistency techniques for numeric CSPs. In IJCAI-93 (pp. 232–238).

  12. Macke, T., Ecker, D., Gutell, R., Gautheret, D., Case, D., & Sampath, R. (2001). Rnamotif, an RNA secondary structure definition and search algorithm. Nucleic Acids Research, 29(22), 4724–4735.

    Article  Google Scholar 

  13. Navarro, G., & Raffinot, M. (2002). Flexible pattern matching in strings—practical on-line search algorithms for texts and biological sequences. Cambridge University Press.

  14. Needleman, S., & Wunsch, C. (1970). A general method applicable to the search for similarities in the amino acid sequence of two proteins. Journal of Molecular Biology, 48(3), 443–453.

    Article  Google Scholar 

  15. Sakakibara, Y., Brown, M., Hughey, R., Mian, I., Sjölander, K., Underwood, R., et al. (1994). Recent methods for RNA modeling using stochastic context-free grammars. In CPM’94 (pp. 289–306).

  16. Thébault, P., de Givry, S., Schiex, T., & Gaspin, C. (2006). Searching RNA motifs and their intermolecular contacts with constraint networks. Bioinformatics, 22(17), 2074–2080.

    Article  Google Scholar 

  17. Vialette, S. (2004). On the computational complexity of 2-interval pattern matching problems. Theoretical Computer Science, 312(2–3), 223–249.

    Article  MathSciNet  MATH  Google Scholar 

  18. Zytnicki, M., Gaspin, C., & Schiex, T. (2006). A new local consistency for weighted CSP dedicated to long domains. In SAC’06: Proceedings of the 2006 ACM symposium on applied computing (pp. 394–398).

  19. Zytnicki, M., Gaspin, C., & Schiex, T. (2006). Suffix arrays and weighted CSPs. In A. Dal Palu, A. Dovier, & S. Will (Eds.), Workshop on constraint based methods for bioinformatics (pp. 69–74). Nantes.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Zytnicki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zytnicki, M., Gaspin, C. & Schiex, T. DARN! A Weighted Constraint Solver for RNA Motif Localization. Constraints 13, 91–109 (2008). https://doi.org/10.1007/s10601-007-9033-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10601-007-9033-9

Keywords

Navigation