Skip to main content

Advertisement

Log in

Probabilistic constraints for nonlinear inverse problems

An ocean color remote sensing example

  • Published:
Constraints Aims and scope Submit manuscript

Abstract

The probabilistic continuous constraint framework complements the representation of uncertainty by means of intervals with a probabilistic distribution of values within such intervals. This paper describes how nonlinear inverse problems can be cast into this framework, highlighting its ability to deal with all the uncertainty aspects of such problems. In previous work we have formalized the framework, relying on simplified integration methods to characterize the uncertainty distributions. In this paper we (1) provide validated constraint-based algorithms to compute these distributions, (2) discuss approximations obtained by their hybridization with Monte-Carlo methods, and (3) obtain a better uncertainty characterization, by including methods to compute expected values and standard deviations. The paper illustrates this new methodology in Ocean Color (OC), a research area which is widely used in climate change studies and has potential applications in water quality monitoring. OC semi-analytical approaches rely on forward models that relate optically active seawater compounds (OC products) to remote sensing measurements of the sea-surface reflectance. OC products are derived by inverting the forward model on a spectral-reflectance basis. Based on a set of preliminary experiments we show that the probabilistic constraint framework is able to provide a valuable characterization of the uncertainty of all scenarios consistent with the model and the measurements. Moreover, the framework can be used to derive how measurements accuracy affects the uncertainty distribution of the retrieved OC products, which may constitute an important contribution to the OC community.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alrefaei, M.H., & Abdul-Rahman, H.M. (2008). An adaptive Monte Carlo integration algorithm with general division approach. Mathematics and Computers in Simulation, 79, 49–59.

    Article  MathSciNet  MATH  Google Scholar 

  2. Arnone, R., et al. (2006). Remote sensing of inherent optical properties: fundamentals, tests of algorithms, and applications. IOCCG Report, 5(5), 1–122.

    Google Scholar 

  3. Bates, D.M., & Watts, D.G. (1988). Nonlinear regression analysis and its applications. Wiley series in probability and mathematical statistics. New York: Willey.

    Book  Google Scholar 

  4. Bates, D.M., & Watts, D.G. (1988). Nonlinear regression: Iterative estimation and linear approximations (pp. 32–65). New York: Wiley.

    Book  Google Scholar 

  5. Benhamou, F., & Goualard, F. (2000). Universally quantified interval constraints. In Principles and practice of constraint programming (pp. 67–82).

  6. Benhamou, F., Goualard, F., Granvilliers, L., Puget, J.-F. (1999). Revising hull and box consistency. In Procs. of ICLP (pp. 230–244). Cambridge: MIT.

    Google Scholar 

  7. Benhamou, F., McAllester, D., van Hentenryck, P. (1994). CLP(intervals) revisited. In ISLP (pp. 124–138). Cambridge: MIT Press.

    Google Scholar 

  8. Berz, M., & Makino, K. (1999). New methods for high-dimensional verified quadrature. Reliable Computing, 5, 13–22.

    Article  MathSciNet  MATH  Google Scholar 

  9. Bistarelli, S., Montanari, U., Rossi, F. (1995). Constraint solving over semirings. In Proc. IJCAI95 (pp. 624–630). San Mateo: Morgan.

    Google Scholar 

  10. Carvalho, E., Cruz, J., Barahona, P. (2008). Probabilistic continuous constraint satisfaction problems. In ICTAI (2) (pp. 155–162).

  11. Carvalho, E., Cruz, J., Barahona, P. (2010). Reasoning with uncertainty in continuous domains. In Integrated uncertainty management and applications. Advances in intelligent and soft computing (Vol. 68, pp. 357–369). New York: Springer.

    Chapter  Google Scholar 

  12. Dubois, D., Fargier, H., Prade, H. (1993). The calculus of fuzzy restrictions as a basis for flexible constraint satisfaction. In Second IEEE international conference on fuzzy systems, 1993 (Vol. 2, pp. 1131–1136).

  13. Fargier, H., & Lang, J. (1993). Uncertainty in constraint satisfaction problems: a probabilistic approach. In Proc. of ECSQARU. LNCS (Vol. 747, pp. 97–104). Berlin: Springer.

    Google Scholar 

  14. Fargier, H., Lang, J., Martin-Clouaire, R., Schiex, T. (1995). A constraint satisfaction framework for decision under uncertainty. In Proc. of the 11th int. conf. on uncertainty in artificial intelligence (pp. 175–180).

  15. Granvilliers, L., & Benhamou, F. (2006). Algorithm 852: realpaver: an interval solver using constraint satisfaction techniques. ACM Transactions on Mathematical Software, 32(1), 138–156.

    Article  MathSciNet  Google Scholar 

  16. Granvilliers, L., Cruz, J., Barahona, P. (2004). Parameter estimation using interval computations. SIAM Journal on Scientific Computing, 26(2), 591–612.

    Article  MathSciNet  MATH  Google Scholar 

  17. Halpern, J.Y. (2003). Reasoning about uncertainty. Cambridge: MIT.

    MATH  Google Scholar 

  18. Hammersley, J.M., & Handscomb, D.C. (1964). Monte Carlo methods. London: Methuen.

    Book  MATH  Google Scholar 

  19. Jaulin, L., Kieffer, M., Didrit, O., Walter, E. (2001). Applied interval analysis. New York: Springer.

    Book  MATH  Google Scholar 

  20. Jaulin, L., & Walter, E. (1993). Set inversion via interval analysis for nonlinear bounded-error estimation. Automatica, 29(4), 1053–1064.

    Article  MathSciNet  MATH  Google Scholar 

  21. Kalos, M., & Whitlock, P. (2009). Monte Carlo methods. New York: Wiley.

    Google Scholar 

  22. Kreinovich, V. (2004). Probabilities, intervals, what next? Optimization problems related to extension of interval computations to situations with partial information about probabilities. Journal of Global Optimization, 29(3), 265–280.

    Article  MathSciNet  MATH  Google Scholar 

  23. Lee, Z., Arnone, R., Hu, C., Werdell, P.J., Lubac, B. (2010). Uncertainties of optical parameters and their propagations in an analytical ocean color inversion algorithm. Applied Optics, 49(3), 369–381.

    Article  Google Scholar 

  24. Lhomme, O. (1993). Consistency techniques for numeric CSPs. In Proc. of the 13th IJCAI (pp. 232–238).

  25. Maritorena, S., & Siegel, D.A. (2005). Consistent merging of satellite ocean color data sets using a bio-optical model. Remote Sensing of Environment, 94(4), 429–440.

    Article  Google Scholar 

  26. McClain, C.R., Feldman, G.C., Hooker, S.B. (2004). An overview of the SeaWiFS project and strategies for producing a climate research quality Global ocean bio-optical time series. Deep Sea Research Part II: Topical Studies in Oceanography, 51(1–3), 5–42.

    Article  Google Scholar 

  27. Menke, W. (1989). Geophysical data analysis: Discrete inverse theory (2nd ed.). New York: Academic Press.

    MATH  Google Scholar 

  28. Moore, R. (1966). Interval analysis. Englewood Cliffs: Prentice-Hall.

    MATH  Google Scholar 

  29. Morel, A., & Prieur, L. (1977). Analysis of variation in ocean colour. Limnology and Oceanography, 22, 709–722.

    Article  Google Scholar 

  30. Robinson, I.S. (2010). Discovering the ocean from space. New York: Springer.

    Book  Google Scholar 

  31. Sam-Haroud, D., & Faltings, B. (1996). Consistency techniques for continuous constraints. Constraints, 1(1/2), 85–118.

    Article  MathSciNet  Google Scholar 

  32. Shazeer, N., Littman, M., Keim, G. (1999). Constraint satisfaction with probabilistic preferences on variable values. In Proc. of national conf. on AI.

  33. Tarantola, A. (2004). Inverse problem theory and methods for model parameter estimation. Philadelphia: SIAM.

    Google Scholar 

  34. Walsh, T. (2002). Stochastic constraint programming. In ECAI (pp. 111–115). Amsterdam: IOS Press.

    Google Scholar 

  35. Wang, P., Boss, E.S., Roesler, C. (2005). Uncertainties of inherent optical properties obtained from semianalytical inversions of ocean color. Applied Optics, 44(19), 4074–4085.

    Article  Google Scholar 

  36. Wolfram Research, Inc. (2010). Mathematica edition: Version 8.0. Champaign: Wolfram Research, Inc.

    Google Scholar 

  37. Zibordi, G., & Voss, K. (2010). Field radiometry and ocean colour remote sensing. In V. Barale, J. Gower, & L. Alberotanza (Eds.), Oceanography from space (Chapter 18, pp. 307–334). New York: Springer.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Cruz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carvalho, E., Cruz, J. & Barahona, P. Probabilistic constraints for nonlinear inverse problems. Constraints 18, 344–376 (2013). https://doi.org/10.1007/s10601-012-9139-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10601-012-9139-6

Keywords

Navigation